Karıştırma duyarsız frekans atlamalı metamalzeme tabanlı elektromanyetik çit uygulaması

Günümüzde kullanılan ve en iyi bilinen gözetim ve çevre koruma sistemleri, çitler, duvarlar ve kameralargibi geleneksel araçlarla birlikte kişi odaklı hizmetlerle sağlanmaktadır. Ancak, geleneksel teknikler herzaman etkili bir şekilde tehditleri tespit edemez. Üstelik çeşitli sensörlerden faydalanan çitler reaksiyonsüresi açısından meydana gelen sızmalara karşı zayıf kalabilmektedir. Bu çalışmada, yeterli reaksiyon süresisağlayıp tehditleri önleyebilmek maksadıyla, laboratuvar şartlarında yazılım tabanlı telsiz desteklielektromanyetik çit uygulaması önerilmiştir. Önerilen çit, elektromanyetik girişimlere ve kasıtlıkarıştırmalara karşı frekans değiştirmeye imkân sağlayan geniş bant metamalzeme antenler kullanılarak oluşturulmuştur. Deneysel sonuçlara göre, önerilen çit sistemi hat boyunca veya ötesindeki hareketliliğitespit etme amacıyla kullanılabileceği öngörülmektedir.

Jamming insensitive frequency hopping metamaterial based electromagnetic fence application

The most well-known surveillance and perimeter protection systems used today count on person-centered services with conventional tools such as fences, walls and cameras. However, conventional techniquescannot always detect threats effectively. Moreover, fences using different sensors are weak for reaction timewhen an infiltration occurs. In order to provide sufficient response time to prevent a threat, we propose anelectromagnetic fence application based on software defined radio in the laboratory conditions. The fence isformed with two broadband metamaterial antennas which allow to change frequency against interferenceand intended jamming. According to the experimental results, it is predicted that the proposed fence systemcan be used to detect an activity beyond or along the perimeter.

___

  • 1. Farlex. The Free Dictionary. http://www.thefreedictionary.com/fence. Erişim tarihi Mart 3, 2016.
  • 2. Juarez J.C., Maier E.W., Choi K.N., Taylor H.F., Distributed fiber-optic intrusion sensor system, J. Lightw. Technol., 23 (6), 2081-2087, 2005.
  • 3. Li X., Sun Q., Wo J., Zhang M., Liu D., Hybrid TDM/WDM-based fiber-optic sensor network for perimeter intrusion detection, J. Lightw. Technol., 30 (8), 1113- 1120, 2012.
  • 4. Libby V., A wireless perimeter protection and intrusion detection system, IEEE International Carnahan Conference on Security Technology (ICCST), San JoseCA, 364-368, 5-8 Ekim, 2010.
  • 5. Onur E., Ersoy C., Delic H., Akarun L., Surveillance wireless sensor networks: deployment quality analysis, IEEE Network, 21 (6), 48-53, 2007.
  • 6. Russomanno D.R., Chari S., Jacobs E.L., Halford C., Near-IR sparse detector sensor for intelligent electronic fence applications, IEEE Sensors J., 10 (6), 1106-1107, 2010.
  • 7. Makino H., Hayashide K., Infrared security sensor, U.S. Patent 9046624 B2, 2015.
  • 8. Butler W., Poitevin P., Bjomholt J., Benefits of wide area intrusion detection systems using FMCW radar, IEEE International Carnahan Conference on Security Technology (ICCST), Ottawa-Ont., 176-182, 8-11 Ekim, 2007.
  • 9. Salman A.O., Dibekci D., Gavrilov S.P., Vertiy A.A., The radiation proporties of a novel wire antenna for the security fence radar, IEEE Trans. Antennas Propag., 56 (9), 2852-2864, 2008.
  • 10. Dibazar A., Yousefi A., Park H.O., Lu B., George S., Berger T.W., Intelligent acoustic and vibration recognition/alert systems for security breaching detection, close proximity danger identification, and perimeter protection, IEEE International Symposium on Technologies for Homeland Security (HST), WalthamMA, 351-356, 8-10 Kasım, 2010.
  • 11. Yousefi A., Dibazar A.A., Berger T.W., Aggregating seismic, acoustic and vibration sensor outputs for enhancing threat detection performance and estimating threat-level, IEEE International Symposium on Technologies for Homeland Security (HST), WalthamMA, 202-207, 15-17 Kasım, 2011.
  • 12. Monod M.O., Faure P., Moiroux L., Rameau P., A virtual fence for animals management in rangelands, 14th IEEE Mediterranean Electrotechnical Conference (MELECON), Ajaccio-France, 337-342, 5-7 Mayıs, 2008.
  • 13. Umstatter C., The evolution of virtual fences: a review, Computers and Electronics in Agriculture, 75 (1), 10-22, 2011.
  • 14. Ipekoglu Y., Yucedag O.M., Saraydemir S., Kocer H., Microstrip patch antenna array design for C-band electromagnetic fence applications, 9th International Conference on Electrical and Electronics Engineering (ELECO), Bursa-Türkiye, 355-358, 26-28 Kasım, 2015.
  • 15. Veselago V.G., The electrodynamics of substances with simultaneously negative values of ? and µ, Soviet Physics Uspekhi, 10, 509-514, 1968.
  • 16. Özden K., Özer A., Yücedağ O.M., Koçer H., Reduction of radar cross section using metamaterial based broadband absorbers, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (4), 1105-1112, 2016.
  • 17. Ozden, K., Yucedag, O. M., Kocer H., Metamaterial based broadband RF absorber at X-band, AEU Int. J. Electron. Commun., 70, 1062-1070, 2016.
  • 18. Alù A., Subwavelength, compact, resonant patch antennas loaded with metamaterial, IEEE Trans. Antennas Propag., 55 (1), 13-25, 2007.
  • 19. Welch T.B., Shearman S., Teaching software defined radio using the USRP and LabVIEW, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto-Japan, 2789-2792, 25-30 Mart, 2012.
  • 20. Akcelik H., Yucedag O.M., Torun E., Kocer H., A metamaterial based broadband microstrip antenna, 9th International Conference on Electrical and Electronics Engineering (ELECO), Bursa-Türkiye, 954-957, 26-28 Kasım, 2015.
  • 21. Akcelik H., Durna Y., Saraydemir S., Kocer H., Measurement of a metamaterial antenna angular power reception performance utilizing Software Defined Radio, AEU Int. J. Electron. Commun., 75, 91-97, 2017.
  • 22. Hartley R., Base Materials for High Speed, High frequency PC Boards, PCB&A West Conference, Mart, 2002.
  • 23. National Instruments. I/Q Data. http://www.ni.com/tutorial/1720/en/. Yayın tarihi Aralık 30, 2013. Erişim tarihi Mart 3, 2016
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ
Sayıdaki Diğer Makaleler

ÜRETİM AŞAMASINDA RAY ve PROFİLDE OLUŞAN KUSURLARININ TESPİTİNE YÖNELİK BİR PARALEL KUSUR ALGILAMA ALGORİTMASI

İlhami Muharrem ORAK, Ahmet ÇELİK

Elastik bir ortamdaki grafen tabakanın titreşim hesabı

Ömer CİVALEK, Kadir MERCAN, Bekir AKGÖZ, Çiğdem DEMİR, Mehmet Cihad ERDİNÇ

İÇ VE DIŞ DİŞLİ ÇARKLARDA MEYDANA GELEN YÜZEY BASINÇLARININ VE DEFORMASYONLARIN İNCELENMESİ

Emin GÜLLÜ, Tufan Gürkan YILMAZ

Simetrik -kararlı gürültü altında akıllı şebeke güvenliği için durağan durum kestirimi ve veri enjeksiyon saldırılarının tespiti

Mehmet Emre ÇEK, Olcay AKAY, Alirıza YAVUZ

Karıştırma duyarsız frekans atlamalı metamalzeme tabanlı elektromanyetik çit uygulaması

Yılmaz DURNA, Hüseyin AKÇELİK, Çağdaş TUNA, Şafak SARAYDEMİR, Hasan KOÇER

SİMETRİK α-KARARLI GÜRÜLTÜ ALTINDA AKILLI ŞEBEKE GÜVENLİĞİ İÇİN DURAĞAN DURUM KESTİRİMİ VE VERİ ENJEKSİYON SALDIRILARININ TESPİTİ

Alirıza YAVUZ, Mehmet Emre ÇEK, Olcay AKAY

Sıcaklık kontrolü ile polistiren/kil nanokompozit sentezi ve karakterizasyonu

Ayla ALTINTEN, Filiz ORMAN

Matris yapısının ve borlama süresinin Cu-Ni-Mo alaşımlı Kgdd'in aşınma davranışına etkisinin incelenmesi

Alaaddin TOKTAŞ, Gülcan TOKTAŞ, Kenan GÜLSÜN

BÖLÜNMÜŞ DAĞITIMLI EŞ ZAMANLI TOPLA DAĞIT ARAÇ ROTALAMA PROBLEMİ İÇİN KARŞILAŞTIRMALI MATEMATİKSEL MODELLER

Ayşe BAYRAK, Bahar ÖZYÖRÜK

Bölünmüş talepli eş zamanlı topla dağıt araç rotalama problemi için karşılaştırmalı matematiksel modeller

Bahar ÖZYÖRÜK, Ayşe BAYRAK