İki robot kol iş birliği ile çalkalanmadan sıvı taşınımın kutup yerleştirme ve LQR kontrolü

Günümüzde robotların günlük yaşamdaki kullanım alanları ve üstlendikleri roller hızla artmakta ve çeşitlilikgöstermektedir. Robotlar ile sıvı taşıma işlemi de son zamanlarda üzerinde çalışma yapılmaya başlanankonular arasındadır. Bu makalede, içi sıvı dolu bir kabın iki düzlemsel robot kolu işbirliğiyle çalkalanmadanve dökülmeden taşınması incelenmiştir. İki robotik kol herhangi bir nesneyi birlikte hareket ettirdiğinde,kinematik olarak kapalı bir zincir oluşur ve bu durum, ele alınan sistemin matematiksel olarak karmaşıklığınıartıran bir dizi kısıtlamaların ortaya çıkmasına neden olur. Bu çalışmada, sıvı çalkalanmasının doğrusalolmayan dinamiği, Genişletilmiş Taylor Serisi fonksiyonları ile doğrusalaştırılmıştır. Ardından, sıvı dolukabı çalkalanmadan, dökülmeden ve yüksek hızla taşımak için kutup yerleştirme (Pole Placement) vedoğrusal karesel düzenleyici (LQR) kontrol yöntemleri kullanılıp, bu iki yöntem sonuçları birbirleriyleteknik olarak karşılaştırılmıştır.

Pole placement and LQR control of slosh-free liquid transportation with dual-arm cooperative robot

Nowadays, the usage areas and the roles of robots increase rapidly in daily life. Liquid transfer with robots is one of the topics which has recently been studied by researchers. In this paper, the transport of a liquidfilled container without slosh by a planar dual-arm cooperative robot was investigated. When a dual-arm robot carries an object, a closed kinematic chain is formed and a set of constraints that increase the mathematical complexity of the system appear during the motion. In this study, the nonlinear dynamics of the liquid slosh was linearized by Extended Taylor Series functions. Then, Pole Placement and Linear Quadratic Regulator (LQR) control techniques were used to achieve high-speed transport of the liquid-filled container without slosh and pouring, and the results of two techniques were compared with each other.

___

  • 1. Reyhanoglu, M. and Hervas, J.R., Nonlinear modeling and control of slosh in liquid container transfer via a PPR robot, Communications in Nonlinear Science and Numerical Simulation, 18 (6), 1481-1490, 2013.
  • 2. Kurode, S., Spurgeon, S.K., Bandyopadhyay, B. and Gandhi, P., Sliding mode control for slosh-free motion using a nonlinear sliding surface, IEEE/ASME Transactions on Mechatronics, 18 (2), 714-724, 2012.
  • 3. Aribowo, W., Yamashita, T., Terashima, K. and Kitagawa, H. Input shaping control to suppress sloshing on liquid container transfer using multi-joint robot arm, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei-Taiwan, 3489-3494, 2010.
  • 4. Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarogonas, D.V. and Kragic, D., Dual arm manipulation—A survey, Robotics and Autonomous systems, 60 (10), 1340-1353, 2012.
  • 5. Basile, F., Caccavale, F., Chiacchio, P., Coppola, J. and Marino, A., A decentralized kinematic control architecture for collaborative and cooperative multi-arm systems, Mechatronics, 23 (8), 1100-1112, 2013.
  • 6. Ren, Y., Liu, Y., Jin, M. and Liu, H., Biomimetic object impedance control for dual-arm cooperative 7-DOF manipulators, Robotics and Autonomous Systems, 75, 273-287, 2016.
  • 7. Caccavale, F., Chiacchio, P., Marino, A. and Villani, L., Six-dof impedance control of dual-arm cooperative manipulators, IEEE/ASME Transactions On Mechatronics, 13 (5), 576-586, 2008.
  • 8. Liu, T., Lei, Y., Han, L., Xu, W. and Zou, H., Coordinated resolved motion control of dual-arm manipulators with closed chain, International Journal of Advanced Robotic Systems, 13 (3), 80, 2016.
  • 9. Jung, J., Yoon, H., Lee, C. and Shin, S., Effect of the vertical baffle height on the liquid sloshing in a threedimensional rectangular tank, Ocean Engineering, 44, 79-89, 2012.
  • 10. Kolaei, A., Rakheja, S. and Richard, M.J., A coupled multimodal and boundary-element method for analysis of anti-slosh effectiveness of partial baffles in a partlyfilled container, Computers & Fluids, 107, 43-58, 2015.
  • 11. Panigrahy, P., Saha, U. and Maity, D., Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks, Ocean Engineering, 36 (3-4), 213-222, 2009.
  • 12. Goudarzi, M. and Farshadmanesh, P., Numerical evaluation of hydrodynamic damping due to the upper mounted baffles in real scale tanks, Soil Dynamics and Earthquake Engineering, 77, 290-298, 2015.
  • 13. Yano, K.i. and Terashima, K., Robust liquid container transfer control for complete sloshing suppression, IEEE Transactions on Control Systems Technology, 9 (3), 483-493, 2001.
  • 14. Tzamtzi, M.P., Koumboulis, F.N. and Kouvakas, N.D. A two stage robot control for liquid transfer, 2007 IEEE Conference on Emerging Technologies and Factory Automation, 1324-1333, 2007.
  • 15. Reyhanoglu, M. and Hervas, J.R., Nonlinear dynamics and control of space vehicles with multiple fuel slosh modes, Control Engineering Practice, 20 (9), 912-918, 2012.
  • 16. Dodge, F.T., The new dynamic behavior of liquids in moving containers, Southwest Research Inst. , San Antonio, TX, 2000.
  • 17. Kim, D.H. and Choi, J.W. Attitude controller design for a launch vehicle with fuel-slosh, SICE 2000.
  • Proceedings of the 39th SICE Annual Conference, Iizuka-Japan, 235-240, 2000.
  • 18. Yano, K.i., Higashikawa, S. and Terashima, K., Motion control of liquid container considering an inclined transfer path, Control Engineering Practice, 10 (4), 465- 472, 2002.
  • 19. Terashima, K. and Yano, K.i., Sloshing analysis and suppression control of tilting-type automatic pouring machine, Control Engineering Practice, 9 (6), 607-620, 2001.
  • 20. Thakar, P.S., Bandyopadhyay, B., Gandhi, P. and Kurode, S. Robust control of rotary slosh using integral sliding modes, 2012 12th International Workshop on Variable Structure Systems, Mumbai-India, 440-445, 2012.
  • 21. Kurode, S., Trivedi, P., Bandyopadhyay, B. and Gandhi, P. Second order sliding mode control for a class of underactuated systems, 2012 12th International Workshop on Variable Structure Systems, 458-462, 2012.
  • 22. Thakar, P.S., Bandyopadhyay, B. and Gandhi, P. Sliding mode control for a class of underactuated systems using feedforward normal form: A slosh-container system, 2014 13th International Workshop on Variable Structure Systems (VSS), Nantes-France, 1-6, 2014.
  • 23. Bandyopadhyay, B., Gandhi, P. and Kurode, S., Sliding mode observer based sliding mode controller for sloshfree motion through PID scheme, IEEE Transactions on Industrial Electronics, 56 (9), 3432-3442, 2009.
  • 24. Aribowo, W., Yamashita, T. and Terashima, K., Integrated trajectory planning and sloshing suppression for three-dimensional motion of liquid container transfer robot arm, Journal of Robotics, 2015, 3, 2015.
  • 25. Ogata, K., Modern control engineering, Prentice Hall Upper Saddle River, NJ, 2009.
  • 26. Dorf, R.C. and Bishop, R.H., Modern control systems, Pearson, New York, USA, 2016.
  • 27. Chan, R.P.M., Stol, K.A. and Halkyard, C.R., Review of modelling and control of two-wheeled robots, Annual reviews in control, 37 (1), 89-103, 2013.
  • 28. Feng, T., Liu, T., Wang, X., Xu, Z., Zhang, M. and Han, S.-c. Modeling and implementation of two-wheel selfbalancing robot equipped with supporting arms, 2011
  • 6th IEEE Conference on Industrial Electronics and Applications, Beijing-China, 713-718, 2011.
  • 29. Shehu, M., Ahmad, M.R., Shehu, A. and Alhassan, A. LQR, double-PID and pole placement stabilization and tracking control of single link inverted pendulum, 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), George TownMalaysia, 218-223, 2015.
  • 30. Nath, V. and Mitra, R. Swing-up and control of Rotary Inverted Pendulum using pole placement with integrator, 2014 Recent Advances in Engineering and Computational Sciences Chandigarh-India, 1-5, 2014.
  • 31. Zubov, N., Mikrin, E., Misrikhanov, M.S., Ryabchenko, V. and Timakov, S., The use of the exact pole placement algorithm for the control of spacecraft motion, Journal of Computer and Systems Sciences International, 52 (1), 129-144, 2013.
  • 32. Wahab, A.A., Mamat, R. and Shamsudin, S.S., The effectiveness of pole placement method in control system design for an autonomous helicopter model in hovering flight, International Journal of Integrated Engineering, 1 (3), 2009.
  • 33. de Souza, L.C.G. and de Souza, A.G., Satellite attitude control system design considering the fuel slosh dynamics, Shock and Vibration, 2014, 2014.
  • 34. Sever, M., Sendur, H.S., Yazici, H. and Arslan, M.S., Active vibration control of a vehicle suspension system having biodynamic driver model with state derivative feedback LQR, Journal of The Faculty of Engineering and Architecture of Gazi University 34 (3), 1574-1583, 2019.
  • 35. Kumar, E.V. and Jerome, J., Robust LQR controller design for stabilizing and trajectory tracking of inverted pendulum, Procedia Engineering, 64, 169-178, 2013.
  • 36. Prasad, L.B., Tyagi, B. and Gupta, H.O., Optimal control of nonlinear inverted pendulum system using PID controller and LQR: performance analysis without and with disturbance input, International Journal of Automation and Computing, 11 (6), 661-670, 2014.
  • 37. Argentim, L.M., Rezende, W.C., Santos, P.E. and Aguiar, R.A. PID, LQR and LQR-PID on a quadcopter platform, 2013 International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka-Bangladesh, 1- 6, 2013.
  • 38. Zhang, T. and Yang, J., Nonlinear dynamics and robust control of sloshing in a tank, Journal of Vibration and Control, 25 (1), 132-140, 2019.
  • 39. Dafeng, S., Chuqi, S., Xiaohua, Z. and Nannan, Y., LQR Based Battery Charge Sustaining Strategy for Hybrid Electric Vehicle, IFAC-PapersOnLine, 51 (31), 601- 605, 2018.
  • 40. Adli, M.A., Ito, K. and Hanafusa, H. Controlling the contact compliance via internal forces on objects held by dual-arm robots, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburgh-USA, 62-69, 1995.
  • 41. Baruh, H., Applied dynamics, CRC press, New York, A.B.D., 2014.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ
Sayıdaki Diğer Makaleler

Duygu analizi için n-aşamalı Gizli Dirichlet Ayırımı ile diğer konu modelleme yöntemlerinin karşılaştırılması

Zekeriya Anıl GÜVEN, Banu DİRİ, Tolgahan ÇAKALOĞLU

Ardyanmalı bir turbofan motorunun çok amaçlı parçacık sürü yöntemiyle optimizasyonu

Onder TURAN, Rıdvan ORUÇ, Tolga BAKLACİOGLU

AlGaN/GaN tabanlı yüksek elektron hareketli transistörlerin SiC, Si ve Safir alt tabakalardaki ısıl davranışının sayısal olarak incelenmesi

Didem Cansu İlhan, Şenol Başkaya

Halbach dizilimi ve PSO algoritması kullanarak DMSM'nin geometrik en iyilemesi

Osman Can SOYGENÇ, Lale T. ERGENE

Akımsız nikel kaplanmış mikro kafes yapıların mekanik özelliklerinin incelenmesi

Recep GÜMRÜK, Altuğ UŞUN

Otomobil güç aktarım sistemleri için elastomer yaylı sönüm sisteminin tasarımı ve doğrulanması

Mehmet Onur GENÇ, Necmettin KAYA

Elektrik akımı ile yabancı ot kontrolü yönteminde tekli ve çoklu elektrotların mortalite oranı üzerindeki etkisinin NDVI tekniği ile araştırılması

Hasan ŞAHİN

İki robot kol iş birliği ile çalkalanmadan sıvı taşınımın kutup yerleştirme ve LQR kontrolü

Mehmet Arif ADLI, Babak Naseri SOUFIANI

Zonguldak-Karadon kömüründen elde edilen aktif karbonların oda sıcaklığında aseton adsorpsiyon özelliklerinin incelenmesi

Fatma OGUZ ERDOGAN, Turkan KOPAC

Doğu Akdeniz’de petrol kirliliğinin modellenmesi

Elif PEHLİVANOGLU-MANTAS, Muhittin Güneş Onay, Flávio MARTİNS