Havacılık endüstrisinde yeni trend: Al-Li esaslı alaşımlar

Al-Li (Alüminyum-Lityum) alaşımları; düşük yoğunluk, yüksek elastisite modülü, mükemmel korozyondirenci, yüksek sertlik, yüksek yorulma çatlak büyüme direnci, düşük kırılma tokluğu ile havacılıkendüstrisinin ilgi odağı haline gelmiştir. Bu alaşımların kullanımı, uçakların koltuk rayları, zemin kirişleri vedirekleri, kanat içi kirişler, kızak çerçeveleri gibi yapısal parçalarında devam ederken, gelecekte başkaparçaların imalatında da kullanılmasına yönelik araştırma çalışmaları yoğun bir şekilde devam etmektedir.Her malzemede olduğu gibi bu alaşımlarda da çeşitli problemlerle karşılaşılmaktadır. Bu çalışmada Al-Lialaşımlarının havacılık alanında kullanımı, karşılaşılan problemler ve çözüm önerileri incelenmiştir.

New trend in aerospace industry: Al-Li based alloys

Al-Li (Aluminum-Lithium) alloys have become the focus of the aerospace industry due to their low density and high elasticity modulus, excellent corrosion resistance, high hardness, high fatigue crack growth resistance, and low fracture toughness. Alloys continue to be used in various structural parts of the aircrafts such as seat beams, floor beams and columns, wing beams, cradle frames, and research studies are intensively going on about its future use for other structural parts. As with all materials, there are various problems in these alloys. In this study, the use of Al-Li based alloys in the aerospace industry, the problems encountered, and the proposal of solutions have been examined.

___

  • 1. Kanematsu H. ve Barry D.M., Amazing airplanes, Springer Science and Business Media Deutschland GmbH, 65-73, 2016.
  • 2. Tang Z.T., Yu T., Xu L.Q.Liu Z.Q., Machining deformation prediction for frame components considering multifactor coupling effects, Int J Adv Manuf Technol, 68 (1-4), 187-196, 2013.
  • 3. Williams J.C. ve Starke Jr E.A., Progress in structural materials for aerospace systems, Acta Mater., 51 (19), 5775-5799, 2003.
  • 4. Prasad N.E., Gokhale A.Wanhill R.J.H., AluminumLithium Alloys - Processing, Properties, and Applications, 1st ed., Butterworth-Heinemann, 2013.
  • 5. Wanhill R.J.H., Fatigue Requirements for Aircraft Structures, in Aerospace Materials and Material Technologies: Aerospace Material Technologies, Editör: Prasad N.E. ve Wanhill R.J.H., Springer, Singapore, 2, 331-352, 2017.
  • 6. Holmes T.M., Chin E.S.C., Huang P.J.Pasternak R.E., Evaluation of 8090 and weldalite-049 aluminumlithium alloys, U.S. Army Materials Technology Laboratory, Watartown, Massachusetts, 39, 1992.
  • 7. Prasad N.E. ve Wanhill R., Aerospace Materials and Material Technologies - Aerospace Materials, Springer, 2016.
  • 8. Ekvall J., Rhodes J.Wald G., Methodology for evaluating weight savings from basic material properties, in Design of Fatigue and Fracture Resistant Structures, STP28867S, Editör: Abelkis P. ve Hudson C., ASTM International, West Conshohocken, PA, 328- 341, 1982.
  • 9. Airbus, A380 specifications. http://www.airbus.com/aircraftfamilies/passengeraircra ft/a380family/innovation/, Yayın tarihi Şubat 2016. Güncellenme tarihi Mart 11, 2016. Erişim tarihi Haziran 2017.
  • 10. Bejan A., Charles J.Lorente S., The evolution of airplanes, J Appl Phys, 116 (4), 044901, 2014.
  • 11. Media A.M., Production ramps up for AluminumLithium Alloys. http://advancedmanufacturing.org/production-rampsaluminum-lithium-alloys/, Yayın tarihi Şubat 2015. Güncellenme tarihi Mart 11, 2016. Erişim tarihi Haziran 2017.
  • 12. Pacchione M. ve Telgkamp J., Challenges of the metallic fuselage, 25th International Congress of the Aeronautical Sciences, Hamburg, Germany, 2006. 13. Engineering S., Al-Li alloys.
  • http://www.smw.com/en/projects/view/7/AlLialloys.html, Yayın tarihi Haziran 2016. Güncellenme tarihi Mart 11, 2016. Erişim tarihi Haziran 2017.
  • 14. Wilkins T., Sea Harrier FRS.1 vs. Yak-38 ‘Forger’. https://defenceoftherealm.wordpress.com/2014/07/07/s ea-harrier-frs-1-vs-yak-38-forger/, Yayın tarihi Temmuz 2015. Güncellenme tarihi Mart 11, 2016. Erişim tarihi Haziran 2016.
  • 15. Wikipedia, Yakovlev Yak-42. https://en.wikipedia.org/wiki/Yakovlev_Yak-42, Yayın tarihi Şubat 2000. Güncellenme tarihi Mart 11, 2016. Erişim tarihi Şubat 2017.
  • 16. Wikipedia, Tupolev Tu-204. https://pt.wikipedia.org/wiki/Tupolev_Tu-204, Yayın tarihi Mart 2007. Güncellenme tarihi Mart 11, 2016. Erişim tarihi Şubat 2017.
  • 17. Wikipedia, Mil Mi-26. https://tr.wikipedia.org/wiki/Mil_Mi-26, Yayın tarihi Nisan 2012. Güncellenme tarihi Mart 11, 2016. Erişim tarihi Şubat 2017.
  • 18. Wikipedia, Sukhoi Su-27. https://tr.wikipedia.org/wiki/Sukhoi_Su-27, Yayın tarihi Mayıs 2012. Güncellenme tarihi Mart 11, 2016. Erişim tarihi Şubat 2017.
  • 19. Militarypower, MIG-29 FULCRUM, RUSSIA http://www.militarypower.com.br/english-frame4- mig29.htm, Yayın tarihi Mart 2014. Güncellenme tarihi Mart 11, 2016. Erişim tarihi Haziran 2017.
  • 20. Pinterest, Beriev Be-200 Sea Plane. https://tr.pinterest.com/demetrisplastou/beriev-be-200- sea-plane/, Yayın tarihi Mayıs 2012. Güncellenme tarihi Mart 11, 2016. Erişim tarihi Haziran 2017.
  • 21. Wikipedia, North American A-5 Vigilante. https://en.wikipedia.org/wiki/North_American_A5_Vigilante, Yayın tarihi Ocak 2016. Güncellenme tarihi Mart 11, 2016. Erişim tarihi Şubat 2017.
  • 22. Tsang D., Boeing chooses largest wingspan for 777X. http://www.aspireaviation.com/2012/07/26/boeingchooses-largest-wingspan-for-777x/, Yayın tarihi Ocak 2017. Güncellenme tarihi Mart 11, 2016. Erişim tarihi Haziran 2017.
  • 23. Alcoa, Alcoa technology. https://www.sec.gov/Archives/edgar/data/4281/000119 312513288275/d566884dex992.htm, Yayın tarihi Mart 2016. Güncellenme tarihi Mart 11, 2016. Erişim tarihi Haziran 2017.
  • 24. Jarrault O., Advanced each generation, in Cowen and Company's 34 th annual aerospace/ Defense Conference, 2013.
  • 25. Peters M. ve Leyens C., Aerospace and space materials, Mater. Sci. Eng., 3, 1-11, 2009.
  • 26. Prasad N.E., Gokhale A.Rao P.R., Mechanical behaviour of aluminium-lithium alloys, Sadhana, 28 (1- 2), 209-246, 2003.
  • 27. Lynch S., Shekhter A., Moutsos S.Winkelman G., Challenges in developing high performance Al-Li alloys, in The 3rd international conference on light materials for transportation systems, LiMAT-2003, Honolulu, 2003.
  • 28. Rioja R.J. ve Liu J., The evolution of Al-Li base products for aerospace and space applications, Metall. Mater. Trans. A, 43 (9), 3325-3337, 2012.
  • 29. Kobayashi K., Ohsaki S., Kamio A., Sato T.Tsuji Y., Effect of Zn addition on corrosion resistance of 2090 and 2091 alloys, Aluminium-Lithium, 2, 673-678, 1992.
  • 30. Cantor B., Assender H.Grant P., Aerospace Materials, CRC Press, 2015.
  • 31. Merati A., Materials replacement for aging aircraft, Research and Technology Organisation (NATO), Neuilly-sur-Seine, France, 1-24, 2011.
  • 32. Smith A.F., Uses and properties of Al-Li on the new EH101 helicopter - New Light Alloys, in AGARD Conference Proceedings No. 444, Neuilly-sur-Seine, France, Advisory Group for Aerospace Research and Development, 1984.
  • 33. Mouritz A.P., Introduction to Aerospace Materials, Woodhead Publishing Limited, 2012.
  • 34. Worldwide - Military, EH-101 Utility (UnitedKingdom, Italy). http://www.worldwidemilitary.com/Military%20Heli's/Middelgrootte%20helikopters/EH101_general_info_english.ht m, Yayın tarihi Eylül 2015. Güncellenme tarihi Mart 11, 2016. Erişim tarihi Haziran 2017.
  • 35. Babel H., Al-Li in Boeing products, in 16th annual Aeromat advanced aerospace materials and processes conference and exposition, Aeromat, 2005.
  • 36. Yuwei X., Yiyuan Z., Wenfeng M.Jainzhong C., Superplastic forming technology of aircraft structures for Al–Li alloy and high-strength Al alloy, J Mater Process Technol., 72 (2), 183-187, 1997.
  • 37. Comac, Sample of Al-Li Alloy barrel section of the fuselage for C919. http://english.comac.cc/news/latest/201409/03/t201409 03_1895735.shtml, Yayın tarihi Nisan 2016. Güncellenme tarihi Mart 11, 2016. Erişim tarihi Haziran 2017.
  • 38. Perrett B., C919 May Be Largely Limited To Chinese Market. http://aviationweek.com/awin/c919-may-belargely-limited-chinese-market, Yayın tarihi Nisan 2013. Güncellenme tarihi Mart 11, 2016. Erişim tarihi Haziran 2017.
  • 39. Starke E., Sanders T.Palmer I., New approaches to alloy development in the Al-Li system, JOM, 33 (8), 24-33, 1981.
  • 40. University S., H491 MEng Aeronautics & Astronautics / Airvehicle Systems Design lecture notes, Engineering and the Environment, 10-15, 2017.
  • 41. Missori S. ve Sili A., Mechanical and microstructural properties of 8090 AL-LI alloy welded joints, Metall. Sci. Technol., 20 (2), 2013.
  • 42. Han B., Tao W.Chen Y., New technique of skin embedded wire double-sided laser beam welding, Opt Laser Eng, 91, 185-192, 2017.
  • 43. Han B., Tao W., Chen Y.Li H., Double-sided laser beam welded T-joints for aluminum-lithium alloy aircraft fuselage panels: Effects of filler elements on microstructure and mechanical properties, Opt Laser Eng, 93, 99-108, 2017.
  • 44. Magnusen P., Mooy D., Yocum L.Rioja R., Development of high toughness sheet and extruded products for airplane fuselage structures, in ICAA13: 13th International Conference on Aluminum Alloys, Wiley Online Library, 2012.
  • 45. Engineering A., A Brief History of Aircraft Structures. http://aerospaceengineeringblog.com/aircraftstructures/, Yayın tarihi Mayıs 2015. Güncellenme tarihi Mart 11, 2016. Erişim tarihi Haziran 2017.
  • 46. James M., Cessna 310K Internal Structure. http://www.mikejamesmedia.com/cessna_310k_07.htm l, Yayın tarihi Ocak 2016. Güncellenme tarihi Mart 11, 2016. Erişim tarihi Haziran 2017.
  • 47. Denzer D., Rioja R., Bray G., Venema G.Colvin E., The evolution of plate and extruded products with high strength and fracture toughness, in ICAA13: 13th International Conference on Aluminum Alloys, Wiley Online Library, 2012.
  • 48. Karabin L., Bray G., Rioja R.Venema G., Al–Li–Cu– Mg–(Ag) products for lower wing skin applications, ICAA13: 13th International Conference on Aluminum Alloys, Pennsylvania, 2012.
  • 49. Lequeu P., Advances in Aerospace AluminumSummaries of presentations by Alcan Aerospace personnel during ASM's AeroMat 2007 Conference. AlLi alloys are highlighted, Adv Mater Processes, 166 (2), 47, 2008.
  • 50. Lequeu P., Smith K.Daniélou A., Aluminum-copperlithium alloy 2050 developed for medium to thick plate, J Mater Eng Perform, 19 (6), 841-847, 2010.
  • 51. Wendelin J Wright D.R.A., D.K. Bhattacharya, Raj P. Chhabra, The Science and Engineering of Materials, 7th ed., United States of America, Cengage Learning, 2014.
  • 52. Khushaim M.S., Investigation of the Precipitation Behavior in Aluminum Based Alloys, Doktora Tezi, King Abdullah University of Science and Technology, Materials Science and Engineering, Thuwal, Kingdom of Saudi Arabia, 2015.
  • 53. Hu L., Zhan L., Shen R., Liu Z., Ma Z., Liu J.Yang Y., Effects of uniaxial creep ageing on the mechanical properties and micro precipitates of Al-Li-S4 alloy, J Mater Sci Eng A. , 688, 272-279, 2017.
  • 54. Cindie Giummarra B.T., Roberto J. Rioja, New aluminum lithium alloys for aerospace applications, in Proceedings of the 3rd International Conference on Light Metals Technology, Saint-Saveur, Québec, Canada, NRC, 2007.
  • 55. Chen A., Zhang L., Wu G., Sun M.Liu W., Influences of Mn content on the microstructures and mechanical properties of cast Al-3Li-2Cu-0.2Zr alloy, J Alloy Compd, 715, 421-431, 2017.
  • 56. Ning J., Zhang L.J., Bai Q.L., Yin X.Q., Niu J.Zhang J.X., Comparison of the microstructure and mechanical performance of 2A97 Al-Li alloy joints between autogenous and non-autogenous laser welding, Mater. Des. , 120, 144-156, 2017.