Hava hedeflerinin tespiti için yakın gerçek zamanlı çoklu frekans bandı destekli pasif radar sisteminin geliştirilmesi

Pasif radarlar, kendilerine ait bir verici bulundurmayan fakat ortamda bulunan vericilerden faydalanarakhedef tespit ve takibi yapabilen radar sistemlerdir. Geçmişi 1934 yılına dayanan pasif radar sistemlerine olanilgi, özellikle son yıllarda birim işlem maliyetinin düşmesi ve analog-sayısal çeviricilerin yaygınlaşması ilehızlı bir artış göstermiştir. Bu tip sistemlerin en büyük avantajları olarak ise vericileri bulunmadığı içinmaliyet etkin olmaları ve ticari frekans bantlarında çalıştıkları için tespit edilemez olmaları gösterilebilir. Buçalışmada, yazılım tabanlı radyo (YTR) teknolojileri kullanılarak özellikle hava hedeflerin tespiti için birpasif radar sistemi, PİRE, geliştirilmiştir. Sistemin frekans ve zaman senkronizasyonu küresel konumlamasistemi (KKS) ile sağlanmış ve YTR teknolojileri sayesinde sistem FM radyo, GSM, Wi-Fi ve TV vericileriile de kullanılabilecek esneklikte tasarlanmıştır. Bu çalışmada geliştirilen PİRE pasif radar sisteminindonanım ve yazılım bileşenleri tanıtılmış, daha sonra potansiyel VHF FM radyo verici kaynakları incelenmiş,bu kaynakların uygunluk analizi yapılmış ve geliştirilen otomatik veri toplama-işleme yazılımı ile yakıngerçek zamanlı hava hedef tespiti yapılmıştır. Ayrıca PİRE için geliştirilen yazılım açık kaynak kodlu olarakpaylaşılmıştır.

Development of semi-real time multi-frequency band supported passive radar system for aerial target detection

Passive radars are radar systems that do not have a transmitter of their own but can identify and follow targets by using the transmitters located in the environment. The interest in passive radar systems, whose history dates back to 1934, has shown a rapid increase in recent years, as the unit processing cost has decreased and the spread of analog-to-digital converters has widened. The greatest advantages of such systems are that they are cost effective because they do not have any transmitters and undetectable as they work in commercial frequency bands. In this study, the PIRE passive radar system is developed by using software based radio technologies especially for detecting aerial targets. The frequency and time synchronization of the system is provided by the global positioning system (GPS). Additionally, the software based radio (SDR) technology increases flexibility and enables the system to be used with FM radio, GSM, Wi-Fi and TV transmitters. In this study, the hardware and the software components of the developed PIRE passive radar system are introduced, then the potential VHF FM radio transmitter sources are examined, the compliance analysis of these sources is made, and the semi-real time aerial target detection is performed with the developed automatic data acquisition and processing software. Also, the developed software of the PIRE system is shared as open source code.

___

  • 1. Lin J.C., Human exposure to RF, microwave, and millimeter-wave electromagnetic radiation [Health Effects], IEEE Microwave Magazine, 17 (6), 32-36, 2016.
  • 2. Setoodeh P., Haykin S., Fundamentals of cognitive radio, John Wiley & Sons, New Jersey, 2017.
  • 3. Griffiths H.D., Baker C.J., An introduction to passive radar, Artech house, Massachusetts, 2017.
  • 4. Palmer J., Cristallini H., Kuschel H., Opportunities and current drivers for passive radar research, 2015 IEEE Radar Conference, 145-150, 2015.
  • 5. Klemm R., Nickel C., Gierull P., Lombardo H., Griffiths H., Koch W., Novel radar techniques and applications: real aperture array radar, imaging radar and passive and multistatic radar, SciTech Publishing, United Kingdom, 2017.
  • 6. Edrich M, Schroeder A., Meyer F., Design and performance evaluation of a mature FM/DAB/DVB-T multi-illuminator passive radar system, IET Radar, Sonar & Navigation, 8 (2), 114-136, 2014.
  • 7. Meyer M.G., Sahr J.D., Passive coherent scatter radar interferometer implementation, observations, and analysis, Radio science, 39 (3), 1-10, 2004.
  • 8. Sahr J.D., Lind F.D., The Manastash Ridge radar: A passive bistatic radar for upper atmospheric radio science, Radio Science, 32 (6), 2345-2358, 1997.
  • 9. Tuysuz B., Urbina J., Lind F.D., Development of a passive VHF radar system using software-defined radio for equatorial plasma instability studies, Radio Science, 48 (4), 416-426, 2013.
  • 10. Tuysuz B., Urbina J.V., Mathews J.D., Effects of the equatorial electrojet on FM-based passive radar systems, IEEE Transactions on Geoscience and Remote Sensing, 55 (7), 4082-4088, 2017.
  • 11. Olsen K.E., Asen W., Bridging the gap between civilian and military passive radar, IEEE Aerospace and Electronic Systems Magazine, 32 (2), 4-12, 2017.
  • 12. Capria A., Giusti E., Moscardini C., Conti M., Petri D., Martorella M., Berizzi, F., Multifunction imaging passive radar for harbour protection and navigation safety, IEEE Aerospace and Electronic Systems Magazine, 32 (2), 30-38, 2017.
  • 13. Ehrman L.M., Lanterman, A.D., A robust algorithm for automatic target recognition using passive, IEEE Southeastern Symposium on System Theory, AtlantaUSA, 102-106, 14-16 March, 2004.
  • 14. Ettus Research. N200/N210. http:// kb.ettus. com/ N200/ N210. Yayın tarihi Haziran 20, 2018. Erişim tarihi Kasım 13, 2018.
  • 15. Blossom E., GNU radio: tools for exploring the radio frequency spectrum, Linux journal, 2004 (122), 4, 2004. 16. Python Software Foundation. Python 2.7 documentation. https://docs.python.org. Yayın tarihi Kasım 13, 2018. Erişim tarihi Kasım 13, 2018.
  • 17. Cardinali R., Colone F., Ferretti C., Pierfrancesco L., Comparison of clutter and multipath cancellation techniques for passive radar, 2007 IEEE Radar Conference, Boston-USA, 469-474, 17-20 April, 2007.
  • 18. Ustundag M., Avci E., Gokbulut M., Ata F., Denoising of weak radar signals using wavelet packet transform and genetic algorithm, Journal of the Faculty of Engineering and Architecture of Gazi University, 29 (2), 375-383, 2014.
  • 19. Levenberg, K., A method for the solution of certain nonlinear problems in least squares, Quarterly of applied mathematics, 2 (2), 164-168, 1944.
  • 20. Griffiths H.D., Baker C.J., Ghaleb H., Ramakrishnan R., Willman E., Measurement and analysis of ambiguity functions of off-air signals for passive coherent location, Electronics Letters, 39 (13), 1005-1007, 2003.
  • 21. Burak Tüysüz. PİRE kaynak kodları. https:// gitlab.com/labaspire/pire. Yayın tarihi 13 Kasım, 2018. Erişim tarihi 13 Kasım, 2018.