Gözenekli malzemelerin etken ısıl iletkenlikleri üzerine mevcut çalışmalar

Bu çalışmada, gözenekli maddelerin etken ısıl iletkenliğinin modellenmesine ve/veya tahminine yönelik literatürde mevcut çalışmalar incelenmiştir. Bu çalışmalar, literatürde tespit edilen ve farklı uygulamaları kapsayan bazı deneysel sonuçlar dikkate alınarak analiz edilmiştir. Sonuçlar tablo halinde verilmiş ve modeller, uygulanabilirlik aralığı, kullanım kolaylığı ile değişik parametrelerin etkileri açısından değerlendirilmiştir. Sonuçta genel olarak kullanılabilecek bağıntılar elde etmek yerine belirli yapılarda ve belirli gözeneklilik aralığında sınırlı bir hata töleransı ile kullanılabilecek bağıntıları seçmenin önem kazandığı ve özellikle yüksek sıcaklığın etken ısıl iletkenliğine etkisinin çalışılması gerektiği sonucuna varılmıştır.

The present studies on effective thermal conductivities of porous mediums

The present studies in literature related to modelling and/or predicting effective thermal conductivities of porous mediums have been reviewed in detail. These studies have been analysed by using some experimental results, including different applications and found in literature. The results are given in Tables, and these models are evaluated in terms of the effects different parameters, applicability interval, and usage convenience. It is concluded that, instead of obtaining relations which can be used generally, choosing of matematical relations to use with finite errors for specific structures and in specific porosity intervals has become important, and particularly, it is concluded that the effect of high temperature on the effective thermal conductivity needs to be studied.

___

  • 1. Bart, G. C. J., Thermal conduction in non homogeneous and phase change media, Doctoral Thesis, Delft University of Technology, The Netherlands, 1994.
  • 2. Pham, Q.T. ve Willix, J., “Thermal conductivity of fresh lamb meat, offal and fat in the range -40 to +30 $^oC$: measurements and correlations”, J. Food Sci., 54 (3), 508–515,1989.
  • 3. Singh, R.ve Kasana, H.S., “Computational aspects of effective thermal conductivity of highly porous metal foams”, Applied Thermal Engineering, 24, 1841– 1849, 2004
  • 4. Tavman, I.H., “Effective Thermal Conductivity of Isotropic Polymer Composites”, Int. Comm. Heat Mass Transfer, 25(5), 723-732, 1998.
  • 5. Belova, I.V. ve Murch, G.E., “Monte Carlo Simulation of the Effective Thermal Conductivity in Two-Pase Material”, Journal of Materials Processing Technology, 153-154, 741-745, 2004.
  • 6. Ochs, F., Heidemann, W. ve Müller-Steinhagen, H., “Effective Thermal Conductivity of Moistened Insulation Materials As A Function of Temperature”, International Journal of Heat and Mass Transfer, 51, 539–552, 2008.
  • 7. Maqsood, A. ve Kamran, K., “Thermophysical properties of porous sandstones: measurements and comparative study of some representative thermal conductivity models”, International Journal of Thermophysics,; 26 (5), 1617-1631, 2005.
  • 8. Cernuschi, F., Ahmaniemi, S., Vuoristo, P. ve Mäntylä, T., “Modelling of thermal conductivity of porous materials: application to thick thermal barrier coatings”, Journal of the European Ceramic Society, 24, 2657-2667, 2004.
  • 9. Singh, K.J., Singh, R. ve Chaudhary, D.R., “Heat conduction and a porosity correction term for spherical and cubic particles in a simple cubic packing”, J. Phys. D: Appl. Phys., 31, 1681– 1687, 1998.
  • 10. Kohout, M., Collier, A.P. ve Štĕpánek, F., “Effective thermal conductivity of wet particle assemblies”, International Journal of Heat and Mass Transfer, 47, 5565–5574, 2004.
  • 11. Chaudhary, D. R. ve Bhandari, R. C., “Heat transfer through a three-phase porous medium”, Journal of Physics D, British Journal of Applied Physics, 1, 815–817, 1968.
  • 12. Maxwell, J.C., A Treatise on Electricity and Magnetism, third ed, Dover Publications Inc., New York, A.B.D., 1954.
  • 13. Beck, A.E., “An improved method of computing the thermal conductivity of fluid-filled sedimentary rocks'”, Geophysics, 41, 133-144, 1976.
  • 14. Carson, J. K., Lovatt, S. J., Tanner, D. J. ve Cleland, A.C., “Thermal Conductivity Bounds for Isotropic Porous Materials”, International Journal of Heat and Mass Transfer,48, 2150- 2158, 2005.
  • 15. Brailsford, A.D. ve Major, K.G., “The thermal conductivity of aggregates of several phases, including porous materials”, Br. J. Appl. Phys., 15, 313–319, 1964.
  • 16. Carson, J. K., Lovatt, S.J., Tanner, D.J. ve Cleland, A.C., “Predicting the effective thermal conductivity of unfrozen, porous foods”, Journal of Food Engineering, 75, 297–307, 2006.
  • 17. Carson, J. K., “Review of effective thermal conductivity models for foods”, International Journal of Refrigeration, 29, 958-967, 2006.
  • 18. Carson, J. K., Prediction of the thermal conductivity of porous foods, PhD Thesis, Massey University, Palmerston North, New Zealand, 2002.
  • 19. Carson, J. K., Lovatt, S. J., Taner, D.J. ve Cleland, A.C., “An analysis of the influence of material structure on the effective thermal conductivity of theoretical porous materials using finite element simulations”, International Journal of Refrigeration, 26, 873–880, 2003.
  • 20. Nielsen, L.E., Mechanical Properties of Polymers and Composites, Vol. 2., Marcel Dekker, New York, 1974.
  • 21. Nielsen, L. E., “Thermal conductivity of particulate-filled polymers”, J. Appl. Polym. Sci., 17, 3819-3825, 1973.
  • 22. Pezzotti, G., Kamada, I. ve Miki, S., “Thermal conductivity of AlN/polystyrene interpenetrating Networks”, Journal of the European Ceramic Society, 20, 1197-1203, 2000.
  • 23. Gonzo, E. E., “Estimating correlations for the effective thermal conductivity of granular materials”, Short communication, Chemical Engineering Journal, 90, 299–302, 2002.
  • 24. Ghodoossi, L., Hava Boşluklu Yapı Elemanlarında Isı Geçişi, Master Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Makine Mühendisliği Ana Bilimdalı, İstanbul, 117, 1988.
  • 25. Fu, S.-Y. ve Mai, Y.-W., “Thermal Conductivity of Misaligned Short-Fiber-Reinforced Polymer Composites”, Journal of Applied Polymer Science, 88, 1497–1505, 2003.
  • 26. Halpin, J.C., “Stiffness and expansion estimates for oriented short fiber composites”, Journal of Composite Materials, 3, 732–734, 1969.
  • 27. Gemci, R., Lif takviyeli polimer kompozit malzemelerde aşınma ve ısı iletimlerinin iyileştirilmesi, Doktora Tezi, Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Tekstil Mühendisliği Anabilim dalı, Bursa, 102, 1996.
  • 28. Agarwal, B.D., Broutman L.J. Analysis and Performance of Fiber Composites, John Wiley and Sons, U.S.A., 1980.
  • 29. Levy, F.L., “A modified Maxwell–Eucken equation for calculating the thermal conductivity of two-component solutions or mixtures”, International Journal of Refrigeration, 4(4), 223–225, 1981.
  • 30. Becker, B.R. ve Fricke, B.A., “Food thermophysical property models”, Int. Comm. Heat Mass Transfer, 26 (5), 627-636, 1999.
  • 31. Wang, J., Carson, J.K., North, M.K. ve Cleland D.J., “A New Approach to Modelling The Effective Thermal Conductivity of Heterogeneous Materials”, International Journal of Heat and Mass Transfer, 49, 3075- 3083, 2006.
  • 32. Landauer, R., “The electrical resistance of binary metallic mixtures”, J. Appl. Phys., 23, 779–784, 1952.
  • 33. Kirkpatrick, S., “Percolation and conduction”, Reviews of Modern Physics, 45, 574–588, 1973.
  • 34. Davis, H.T., Valencourt, L.R. ve Johnson, C.E., “Transport processes in composite media”, J. Am. Ceram. Soc., 58, 446-452, 1975.
  • 35. Xue, Q. ve Xu, W.-M., “A Model of Thermal Conductivity of Nanofluids with Interfacial Shells”, Materials Chemistry and Physics, 90, 298–301, 2005.
  • 36. Krischer, O., The scientific fundamentals of drying technology, Springer-Verlag, Berlin, 1963.
  • 37. Hamdami, N., Monteau, J.-Y. ve Le Bail, A., “Effective thermal conductivity of a high porosity model food at above and sub-freezing temperatures”, International Journal of Refrigeration, 26, 809–816, 2003.
  • 38. Maroulis, Z.B., Krokida, M.K. ve Rahman, M.S., “Astructural generic model to predict the effective thermal conductivity of fruits and vegetables during drying”, J. Food Eng., 52, 47– 52, 2002.
  • 39. De Vries, U., Sluimer, P.ve Bloksma, A.H., “A quantitative model for heat transport in dough and crumb during baking”, International Symposium on Cereal Science and Technology, Lund University, Ystad, Sweden, 174–88, 13–16 June 1989.
  • 40. Russell, H.W., “Principles of Heat Flow in Porous Insulators”, J. Am. Ceram. Soc., 18, 1-5, 1935.
  • 41. Tseng, C., Yamaguchit, M.ve Ohmorit, T., “Thermal Conductivity of Polyurethane Foams from Room Temperature to 20 K”, Cryogenics, 37, 305-312, 1997.
  • 42. Chiew, Y.C. ve Glandt, E., “The effect of structure on the conductivity of a dispersion”, J. Coll. Interf. Sci., 94, 90–104, 1983.
  • 43. Francl, J. ve Kingery, W.D., “Thermal conductivity: IX, Experimental investigation of effect of porosity on thermal conductivity”, J. Am. Ceram. Soc., 37, 99–107, 1954.
  • 44. Sheldon, R.P., Composite polymeric materials, Applied Science Publishers, London and New York, 86-88, 1982.
  • 45. Chawla, K.K., Composite Materials-Science and Engineering, Springer-Verlag, 1987.
  • 46. Ozilgen, M., Food Process Modeling and Control: Chemical Engineering Applications, CRC Press, 518, 1998.
  • 47. Hill, J.E., Leitman, J.D. ve Sunderland, J.E., “Thermal conductivity of various meats”, Food Technology, 21, 1143–1148, 1967.
  • 48. Rizvi, S.S.H., Thermodynamic Properties in Dehydration, Editör: Rao, M.A. ve Rizvi, S.S.H., Engineering Properties of Foods, Marcel Dekker, Newyork, 531, 1994.
  • 49. Ashrae Handbook, Refrigeration, American Society of Heating, Refrigeration and Airconditioning Engineers Inc., GA, Atlanta, 2002.
  • 50. Rahman, M.S., Thermophysical properties of foods, Editör: Sun, D.-W., Advances in food refrigeration, Leatherhead Publishing, Surrey, England, 2001.
  • 51. Kopelman, I. J., Transient heat transfer and thermal properties in food systems, Doktora Tezi, Food Science Departmant, Michigan State University, East Lansing, MI, U.S.A., 1966.
  • 52. Jeffrey, D.J., “Conduction through a random suspension of spheres”, Proc. R. Soc. Lond. A, 335, 355–367, 1973.
  • 53. Xue, Q.-Z., “Model for effective thermal conductivity of nanofluids”, Physics Letters A,307 (5-6), 313–317, 2003.
  • 54. Bauer, T.H., “A general analytical approach toward the thermal conductivity of porous media”, Int. J. Heat Mass Transfer, 36, 4181– 4191, 1993.
  • 55. Babanov, A.A., “Method of calculation of thermal conduction coefficient of capillary porous material”, Sov. Phys. Technol. Phys., 2, 476–484, 1957.
  • 56. Ye, Z., Wells, C.M., Carrington, C.G. ve Hewitt, N.J., “Thermal Conductivity of Wool and Wool-Hemp Insulation”, International Journal of Energy Research, 30, 37-49, 2006.
  • 57. Symons, J.G., Clarke, R.E. ve Pierce, J.V., “Thermal performance of several Australian fibrous insulating materials”, Journal of Thermal Insulation and Building Envelopes,19, 72–88, 1995.
  • 58. Kohout, M., Collier, A.P. ve Štĕpánek, F., “Microstructure and transport properties of wet poly-disperse particle assemblies”, Powder Technology, 156, 120–128, 2005.
  • 59. Cheng, S.C. ve Vachon, R.I., "The Prediction of the Thermal Conductivity of Two and Three Phase Solid Heterogeneous Mixtures”, Int.J. Heat Mass Transfer, 12, 249, 1969.
  • 60. Agari, Y., Uno, T., “Estimation on Thermal Conductivities of Filled Polymers”, J. Appl. Polym. Sci., 32, 5705-5712, 1986.
  • 61. Gori, F., “A Theoretical Model for Predicting the Effective Thermal Conductivity of Unsaturated Frozen Soils”, Proceedings of The 4th International Conference on Permafrost, vol. 1., Editör: Péwé, T. L., Washington DC: National Academy Press, Fairbanks, U.S.A., 363-368, 1983.
  • 62. Gori, F., Marino, C. ve Pietrafesa, M., “Experimental measurements and theoretical predictions of the thermal conductivity of two phases glass beads”, International communications in heat and mass transfer, 28 (8), 1091-1102 (17), 2001.
  • 63. Barea, R., Osendi, M.I., Ferreira, J.M.F. ve Miranzo, P. “Thermal conductivity of highly porous mullite material”, Acta Materialia, 53, 3313-3318, 2005.
  • 64. Singh, J. R., “Effective thermal conductivity of highly porous two-phase systems”, Applied Thermal Engineering, 24, 2727–2735, 2004.
  • 65. Argento, C. ve Bouvard, D., “Modeling the effective thermal conductivity of random packing of spheres through densification”, Int. J. Heat Mass Transfer, 39, 1343–1350, 1996.
  • 66. Tichá, G., Pabst, W. ve Smith, D.S., “Predictive model for the thermal conductivity of porous materials with matrix-inclusion type microstructure”, Journal of Materials Science (Letters), 40 (18), 5045-5047, 2005.
  • 67. Baschirow, A.B. ve Selenew, J.W., “Thermal Conductivity of Composites”, Plaste Kaut, 23, 656, 1976.
  • 68. Bruggeman, D.A.G., “Calculation of physical constants from heterogeneous substances”, Annals of Physics, 24, 636, 1935.
  • 69. Schulz, B., “Thermal conductivity of porous and highly porous materials”, High Temperature- High Pressures., 13, 649-660, 1981.
  • 70. Meredith, R.E. ve Tobias, C.W., Conduction in heterogeneous systems, Editör: Tobias, C.W., Advances in Electrochemistry and Electrochemical Engineering, vol. 2, Interscience Publisher, Newyork, 15-47, 1962.
  • 71. Coble, R.L., Kingery, W.D., “Effect of porosity on physical properties of sintered alumina”, J. Am. Ceram. Soc., 39, 377–384, 1956.
  • 72. Pabst, W., “Simple second-order expression: For the porosity dependence of thermal conductivity”, Journal of Materials Science, 40 (9-10), 2667- 2669(3), 2005.
  • 73. Boomsma, K. ve Poulikakos, D., “On the effective thermal conductivity of a threedimensionally structured fluid-saturated metal foam”, International Journal of Heat and Mass Transfer, 44, 827-836, 2001.
  • 74. Sugawara, A. ve Yoshizawa, Y., “An Investigation on the Thermal Conductivity of Porous Materials and its Application to Porous Rock”, Australian J. Phys., 14, 468-469, 1961.
  • 75. Fan, L.-W., Hu, Y.-C., Tian, T. ve Yu, Z.-T., “The prediction of effective thermal conductivities perpendicular to the fibres of wood using a fractal model and an improved transient measurement technique”, International Journal of Heat and Mass Transfer, 49, 4116–4123, 2006.
  • 76. Peitgen, H.O. ve Saupe, D., The Science of Fractal Images, Springer-Verlag Newyork Inc, New York, U.S.A., 1988.
  • 77. Hamilton, R.L. ve Crosser, O.K., “Thermal conductivity of heterogeneous two-component systems”, Industrial and Engineering Chemistry Fundamentals, 1(3), 187–191, 1962.
  • 78. Davis, R.H., “Thermal conductivity of mixture with spherical inclusions”, Int. J. Thermophys., 7, 609-620, 1986.
  • 79. Lu, S.-Y. ve Lin, H.-C., “Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity”, Journal of Applied Physics, 79, 6761, 1996.
  • 80. Bhattacharya, A., Calmidi, V.V. ve Mahajan, R.L., “Thermophysical properties of high porosity metal foams”, International Journal of Heat and Mass Transfer, 45, 1017-1031, 2002.
  • 81. Kalaprasad, G., Pradeep, P., Mathew, G., Pavithran, C. ve Thomas, S., “Thermal conductivity and thermal diffusivity analyses of low-density polyethylene composites reinforced with sisal, glass and intimately mixed sisal/glass fibres”, Composites Science and Technology, 60, 2967-2977, 2000.
  • 82. Springer, G.S., Tsai, S.W., “Thermal conductivities of unidirectional materials”, J. Compos. Mater, 1, 166-173, 1967.
  • 83. Verma, L.S., Shrotriya, A.K., Singh, R. ve Chaudhary, D.R., “Thermal conduction in twophase materials with spherical and non-spherical inclusions”, J. Phys. D: Appl. Phys., 24, 1729– 1737, 1991.
  • 84. Druma, A.M., Alam, M.K. ve Druma, C., “Analysis of Thermal Conduction in Carbon Foams”, International Journal of Thermal Sciences, 43, 689-695, 2004.
  • 85. Gibson, P.W., “Multiphase heat and mass transfer through hygroscopic porous media with applications to clothing materials”, Technical Report Natick/TR-97/005, U.S. Army Natick Research, Development, and Engineering Center, MA, Natick, U.S.A., 1996.
  • 86. Patirop, C., Modeling of Thermal Performance of Firefighter Protective Clothing During The Intense Heat Exposure, Doktora Tezi, North Carolina State University, Mechanical Engineering Departmant, Raleigh, North Carolina, 2004.
  • 87. Rahman, M.S. ve Chen, X.D., “A general form of thermal conductivity equation as applied to an apple: effects of moisture, temperature and porosity”, Drying Technol., 13, 1-18, 1995.
  • 88. Rahman, M.S., Chen, X.D. ve Perera, C.O., “An improved thermal conductivity prediction model for fruits and vegetables as a function of temperature, water content and porosity”, Journal of Food Engineering, 31, 163–170, 1997.
  • 89. Rahman, M.S., “Thermal conductivity of four food materials as a single function of porosity and water content”, J. Food Eng., 15, 261-268, 1992.
  • 90. Gupta, M., Yang, J. ve Roy, C., “Modelling the Effective Thermal Conductivity in Polydispersed Bed Systems: A Unified Approach using the Linear Packing Theory and Unit Cell Model”, The Canadian Journal of Chemical Engineering, 80, 830-839, 2002.
  • 91. Gupta, M., Yang, J. ve Roy, C., “Predicting the Effective Thermal Conductivity of Polydispersed Beds of Softwood Bark and Softwood Char”, Fuel, 82, 395-404, 2003.
  • 92. Tsotsas, E. ve Martin, H., “Thermal Conductivity of Packed Beds: A Review”, Chem. Eng. Process, 22, 19–37, 1987.
  • 93. Zehner, P. ve Schlunder, E.U., “Thermal Conductivity of Granular Materials at Moderate Temperatures”, Chemie Ingr Tech., 42, 933- 941, 1970.
  • 94. Fu, X., Viskanta, R. ve Gore, J.P., “Prediction of Effective Thermal Conductivity of Cellular Ceramics”, Int. Comm. Heat Mass Transfer, 25 (2), 151-160, 1998.
  • 95. Lee, S.L. ve Yang, J.H., “Modelling of Effective Thermal Conductivity for A Nonhomogeneous Anistropic Porous Medium”, Int. J. Heat Mass Transfer, 41 (6-7), 931-937, 1997.
  • 96. Park, J., Thermal/Fluid Characteristics of Isotropic Plain-Weave Screen Laminates as Heat Exchange Surfaces, Master Thesis, University of Nevada, Mechanical Engineering Departmant, Reno, Nevada, U.S.A., 2001.
  • 97. Xu, J. ve Wirtz, R.A., “In-Plane Effective Thermal Conductivity of Plain-Weave Screen Laminates”, IEEE Transactions on components and packaging Technologies, 25 (4), 615-620, 2002.
  • 98. Hu, X.-J., Du, J.-H., Lei, S.-Y. ve Wang, B.-X., “Technical Note:A model for the thermal conductivity of unconsolidated porous media based on capillary pressure±saturation relation”, International Journal of Heat and Mass Transfer, 44, 247-251, 2001.
  • 99. Liang, X.-G.ve Qu, W. “Effective thermal conductivity of gas-solid composite materials and the temperature difference effect at high temperature”, International Journal of Heat and Mass Transfer, 42 (10), 1885-1893(9), 1999.
  • 100.Soma Shekar, S., Thermal performance of plain weave screen as a heater surface in paralel plate free convection, Master Tezi, University of Nevada, Mechanical Engineering, Reno, Nevada, 94, 2006.
  • 101. Seo, B.H., Cho, Y.J., Youn, J.R., Chung, K., Kang, T.J. ve Park, J.K. “Model for Thermal Conductivities in Spun Yarn Carbon Fabric Composites”, Polymer Composites, 26, 791- 798, 2005.
  • 102.Carson, J.K., Lovatt, S. J., Tanner, D.J. ve Cleland, A.C., “Experimental measurements of the effective thermal conductivity of a pseudoporous food analogue over a range of porosities and mean pore sizes”, Journal of Food Engineering, 63, 87–95, 2004.
  • 103.Jiang, P., Li, M., Lu, T., Yu, L. ve Ren, Z., “Experimental Research on Convection Heat Transfer in Sintered Porous Plate Channels”, International Journal of Heat and Mass Transfer, 47, 2085-2096, 2004.
  • 104.Jang, B.K. ve Matsubara, H., “Influence of rotation speed on microstructure and thermal conductivity of nano-porous zirconia layers fabricated by EB-PVD”, Scripta Materialia,52, 553-558, 2005.
  • 105.Fu, X. ve Chung, D.D.L., “Effects silica fume latex methycellulose and carbon fibers on the thermal conductivity and specific heat of cement paste”, Cement and Concrete Research, 27 (12), 1799-1804(6), 1997.
  • 106.Levine, I.N., Physical chemistry, McGraw-Hill Education, Maidenhead, England, 2001.
  • 107.Lide, D.R., CRC Handbook of chemistry and physics, CRC Press, Boca Raton (FL), U.S.A, 2003.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ
Sayıdaki Diğer Makaleler

ÇIKIK KUTUPLU SENKRON HİDROGENERATÖRLERİN DİNAMİK VE GEÇİCİ ZAMAN ANALİZ KOŞULLARINDA ARDIŞIK KARMA DEĞİŞKEN NONLİNEER PROGRAMLAMA METODU KULLANILARAK OPTİMİZASYONU

İsmail TOPALOĞLU, Osman GÜRDAL

ELEKTROMANYETİK TASARIM PROGRAMI KULLANILARAK ELEKTRİK MAKİNELERİNİN TASARIMINDA BOYUT OPTİMİZASYONU İÇİN GELİŞTİRİLMİŞ İKİNCİ DERECEDEN HASSASİYET ANALİZİ TEMELLİ NÜMERİK BİR YAKLAŞIM

İsmail TOPALOĞLU, Osman GÜRDAL

ÖZÖRGÜTLEMELİ HARİTA AĞLARI VE GRİ DÜZEY EŞ OLUŞUM MATRİSLERİ İLE GÖRÜNTÜ BÖLÜTLEME

Ayşe DEMİRHAN, İnan GÜLER

TEK ETKİLİ BİR ABSORPSİYONLU SOĞUTMA SİSTEMİNİN TERMODİNAMİK ANALİZİ

M. Zeki YILMAZOĞLU

TİCARİ SAF ALÜMİNYUMUN YÖNLÜ KATILAŞTIRILMASI İÇİN DÜZENEK GELİŞTİRİLMESİ

K. Kunt TÜZÜNALP, İlker ÜNALAN, Yusuf ÖKSÜZ, Kadir KOCATEPE

FERRİTİK-PERLİTİK KÜRESEL GRAFİTLİ DÖKME DEMİRİN ADHESİF AŞINMA DAYANIMI ÜZERİNDE BORLAMA YÜZEY İŞLEMİNİN ETKİSİ

Ferhat GÜL

MATLAB WEB SUNUCUSU KULLANILARAK KABLOSUZ ALGILAYICI AĞLAR İÇİN İNTERNET TABANLI İZLEME SİSTEMİ TASARIMI

Cüneyt BAYILMIŞ, Murat ÇAKIROĞLU, Selim ÖZTÜRK, İlyas ÇANKAYA

Silindirik tornalama sırasında meydana gelen çap hatalarının deneysel olarak araştırılması

Abdurrahman KARABULUT

Esnek imalat sistemlerinde parça seçimi ve makina yükleme için uzun dönem hafızalı bir tabu arama algoritması

Murat ARIKAN, Serpil EROL

FNBDT/SCIP PROTOKOLÜNÜN YEREL ALAN AĞINDA UYGULAMASI VE SINIR DEĞERLERİN TESPİT EDİLMESİ

Orkun DİLLİ, Nursel AKÇAM, Murat KOYUNCU