Fiber optik akım sensörünün modellenmesi ve simülasyonu

Bu çalışmada, Faraday etkili fiber optik akım sensörünü oluşturan polarizör, analizör, lazer, fotodiyot gibi elemanlar Matlab Simulink programı kullanılarak ayrı ayrı modellenmekte ve simüle edilmektedir. Böylece sistemi oluşturan parçaların optimum performansları belirlenebilmektedir. Tüm bu modellerin birleştirilmesiyle, Faraday etkili fiber optik akım sensörünün sistem modeli oluşturulmakta ve çeşitli dinamiklere karşı cevabı incelenmektedir. Elde edilen sonuçlar analiz edilmekte ve değerlendirilmektedir. Daha düşük akımların ölçülmesi için fiberin sarım sayısının artırılması, sistem cevabını geciktirmektedir. Sistemin çıkışı, ışığın kutuplanma açısı ölçüldüğü için lazer optik gücünden etkilenmemektedir.

Modeling and simulation of fiber optic current sensor

In this study, the components of fiber optic current sensor based on Faraday Effect such as polarizer, analyzer, laser, photodiode have been modeled and simulated by Matlab Simulink software, separately. Thus, the optimal performances of the components can be determined. The complete system sensor based Faraday’s effect has been modeled by using of these sub-models and examined the effects of various dynamics. The obtained results have been analyzed and evaluated. Increasing number of turns of fiber wound for measuring of small currents has caused time lag of the system response. The output of system has not been affected by optical power of laser since it has been measured that the rotation angle of polarization of light.

___

  • 1. Liehr, S., “Optical Measurement of Currents in Power Converters”, Master’s Thesis Project, Microsystem Technology Group School of Electrical Engineering Royal Institute of Technology, Stockholm, 1, (2006)
  • 2. Leung, F.Y.C., Chiu, W.C.K., Demokan, M.S., “Fiber-Optic Current Sensor Developed for Power System Measurement”, IEEE International Conference on Advances in Power System Control, 637, 638, (1991).
  • 3. Tantaswadi, P., “In-Line Sagnac Interferometer Current Sensor”, For the Degree of Doctor of Philosophy, Office of Graduate Studies of Texas A&M University, 1, (1995).
  • 4. Briffod, F., Alasia, D., Thévenaz, L., Cuénoud, G., Robert, P., “Extreme Current Measurements Using A Fibre Optics Current Sensor”, Optical Fiber Sensors Conference Technical Digest, 1, (2002).
  • 5. Ulmer, E.A., “A High-Accuracy Optical Current Transducer for Electric Power System”, IEEE Transactions on Power Delivery, Vol. 5, No. 2, 896, (1990).
  • 6. Schaer, T., Rusnov, R., Eagle, S., Jastrebski, J., Albanese, S., Fernando, X., “A Dynamic Simulation Model for Semiconductor Laser Diodes”, IEEE CCECE Canadian Conference, 293, 297, (2003).
  • 7. Cvetković, M., Matavulj, P., Radunović, J., Marinčić, A., “An InGaAs P-i-N Photodiode Model: Description and Implementations in The Analysis of The 1.55 μm Lightwave System”, Journal of Optical Communications, Vol. XX, No. Y, 2, (2000).
  • 8. Jiao, B., Wang, Z., Liu, F., Bi, W., “Interferometric Fiber-Optic Current Sensor with Phase Conjugate Reflector”, Proceeding of the 2006 IEEE International Conference on Information Acquisition, China, 707, 708, (2006).
  • 9. Özkan, M., “Fiber Optik Kablolar ile İletişim ve Fiber Optik Dalgakılavuzları”, Yüksek lisans tezi, Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir, 10, (1998).
  • 10. Stokes, J.L., Bartsch, R.R., Cochrane, J.C., Chrien, R.E., Forman, P.J., Looney, L.D., Tabaka, L.J., Veeser, L.R., “Precision Current Measurements on Pegasus II Using Faraday Rotation”, Pulsed Power Conference, 381, (1995).
  • 11. Kerstetter, P.C., “Models of Optoelectronic Devices Suitable for Electrical Circuit Simulation”, For the Degree of Doctor of Philosophy, Georgia Institute of Technology, 41, 180, 181, (1998).
  • 12. Si PIN photodiode S5971, S5972, S5973 series [online], http://sales.hamamatsu.com/assets/pdf/parts_S/S5 971_etc.pdf, 2, (Ziyaret tarihi: 04.04.2007).
  • 13. Habibullah, F., Huang, W. P., “A Self- Consistent Analysis of Semiconductor Laser Rate Equations For System Simulation Purpose”, Optics Communications 258, 237, 238, (2006).
  • 14. Fiber Optics [online], http://www.commsplace.com/Knowledge/ITcs/html/tutorials/fibre_optics/ introduction_fibre_optics.htm, (Ziyaret tarihi: 30.04.2008).
  • 15. Reddy, M., “Imbedded Optical Fiber Sensor of Differential Strain And Temperature in Graphite/Epoxy Composites”, For the Degree of Master od Science, Virginia Polytechnic Institute and State University, Virginia, 22, (1986).
  • 16. Rose, A. H., Etzel, S. M. Wang, C. M., “Verdet Constant Dispersion in Annealed Optical Fiber Current Sensors”, Journal of Lightwave Technology, Vol. 15, No. 5, 806, (1997).
  • 17. Li, H. Y., Crossley, P. A., Aggarwal, R. K., “Application of Fibre Optical Current Transducer to Protection”, Developments in Power System Protection, IEE, 275, (1997).
  • 18. Gan, K. G., Bowers, J. E., “Measurement of Gain, Group Index, Group Velocity Dispersion, and Linewidth Enhancement Factor of an InGaN Multiple Quantum-Well Laser Diode”, IEEE Photonics Technology Letters, Vol. 16, No. 5, 1256, (2004).
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ