Dairesel delikli dikdörtgen levhanın H-tipi sonlu elemanlar ile uyarlamalı analizi

H-tipi elemanlar kullanılarak dairesel bir boşluk içeren levhaların gerilme analizi uyarlamalı sonlu elemanlar metoduyla MATLAB® ortamında yazılan bir programla yapılmıştır. Yük etkisindeki levhanın uyarlamalı sonlu elemanlarla iteratif çözümünde iki tip yaklaşım kullanılmıştır. Bunlardan ilkinde sisteme ait başlangıç çözüm ağı teşkil edilip gerilme analizi yaptıktan sonra, Zienkiewicz ve Zhu tarafından oluşturulmuş olan hızlı yakınsayan yama düzeltmesi (HYD) kullanılmakta ve sonlu elemanlar çözümünden elde edilen gerilmeler iyileştirilmektedir. İkinci yaklaşımda, seçilen bir gerilme bileşeninin komşu noktalar arasındaki değişimini dikkate alarak sonlu elemanlar ağı sıklaştırılmaktadır. Sonlu elemanlar çözüm ağının oluşturulmasında Delaunay kriteri kullanılmıştır. HYD iyileştirmesi kullanarak optimum sayıda sonlu elemanla uyarlamalı analiz yapılmıştır. İkinci yöntemde elde edilen üçgen eleman sayısı birinci yöntemdekine göre yaklaşık yüzde 50 daha fazla olmaktadır.

H-versiyon adaptive finite element analysis of plate with circular hole

Stress analysis of rectangular plates with a circular hole is carried out by a program written in MATLAB® environment and iterative h-version adaptive finite element method. Two different approaches were used in th adaptive solution of loaded plate. In the first one, stress calculation was made using initial course mesh and superconvergent patch recovery technique (SPR) proposed by Zienkiewicz ve Zhu was employed to refine th stress values. In second approach, finite element mesh was refined considering the variation of a chosen stres component between adjacent nodes. Triangular mesh was obtained using Delaunay criterion. Adaptive analyse were carried out using SPR technique with optimum number of finite elements. Number of triangular element obtained from second approach was about 50 percent greater than the number of elements in the first approach.

___

  • 1. Basu, P.P., Peano, A., “Adaptivity in p-Version Finite Element Analysis”, Journal of Structural Engineering, Cilt 109, 2310-2324, 1983.
  • 2. Baker, T.J., “Mesh Adaptation Strategies for Problems in Fluid Dynamics”, Finite Elements in Analysis and Design, Cilt 25, 243-273, 1997.
  • 3. Zienkiewicz, O.C., Zhu, J.Z., Gong, N.G., “Effective and Practical h–p Adaptive Analysis Procedure for the Finite Element Method”, Int. J. Numer. Meth. Engng., Cilt 28, 879-891, 1989.
  • 4. Carnevali, P., Morris, R.B., Tsuji, Y., Taylor, G.,“New Basis Functions and Computational Procedures for p-Version Finite Element Analysis”, Int. J. Numer. Meth. Engng., Cilt 36, 3759-3779, 1993.
  • 5. Berger, M.J., Jameson, A., “Automatic Adaptive Grid Refinement for Euler Equations”, AIAA J.,Cilt 23, 561-568, 1985.
  • 6. Rivara, M.C., “A 3-D Refinement Algorithm Suitable for Adaptive and Multi-Grid Techniques’, Commun.Appl. Numer. Meth., Cilt 8, 281-290, 1992.
  • 7. Borouchaki, H., Frey, P.J., “Adaptive Triangular Quadrilateral Mesh Generation”, Int. J. Numer.Meth. Engng., Cilt 41, 915-934, 1998.
  • 8. Babuska, I., Rheinboldt, W.C., “A Posteriori Error Estimates of the Finite Element Method”, Int. J.Numer. Meth. Engng., Cilt 12, 597-1615, 1978.
  • 9. Hinton, E., Campbell, J.S., “Local and Global Smoothing of Discontinuous Finite Element Functions Using Least Squares Method”, Int. J.Numer. Meth. Engng., Cilt 8, 461-480, 1974.
  • 10. Zienkiewicz, O.C., Zhu, J.Z., “A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis”, Int. J. Numer. Meth. Engng., Cilt 24, 333-357, 1987.
  • 11. Grosse, I.R., Katragadda, P., Benoit, J., “An Adap-tive Accuracy-Based a Posteriori Error Estimator”,Finite Elements in Analysis and Design, Cilt 12, 75-90, 1992.
  • 12. Zienkiewicz, O.C., Zhu, J.Z., “The Superconvergent Patch Recovery and a Posteriori Error Estimate.Part 1. The Recovery Technique”, Int. J. Numer. Meth. Engng., Cilt 33, 1331-1364, 1992.
  • 13. Zienkiewicz, O.C., Zhu, J.Z., “The Superconver gent Patch Recovery and a Posteriori Error Estimate.Part 2. Error Estimates and Adaptivity”, Int. J. Numer. Meth. Engng., Cilt 33, 1365-1382, 1992.
  • 14. Zhu, Q., Zhao, Q., “SPR Technique and Finite Element Correction”, Numer. Math., Cilt 96,185-196, 2003.
  • 15. ANSYS Online Help, SAS IP, 1999.
  • 16. Paulino, G.H., Menezes, I.F.M., Cavalcante Neto,J.B., Martha, L.F., “A Methodology for Adaptive Finite Element Analysis: Towards an Integrated Computational Environment”, Computational Mechanics, Cilt 23, 361-388, 1999.
  • 17. Frey, W.H., “Selective Refinement: A New Strategy for Automatic Node Placement in Graded Triangular Meshes”, Int. J. Numer. Meth. Engng., Cilt 24, 2183-2200, 1987.
  • 18. Bern, M., Plassmann, P., “Mesh Generation”, Handbook of Computational Geometry, Sack J.R.,Urrutia J. (editors), North Holland, 320-323, 2000.
  • 19. Wiberg, N.-E., Abdulwahab, F., “Error Estimation with Postprocessed Finite Element Solutions”, Computers and Structures, Cilt 64, 113-137, 1997.
  • 20. Timoshenko, S.P., Goodier, J.N., Theory of Elasticity, McGraw-Hill, New York, 1969.