Mikroalg üretimi ve mikroalglerden biyoyakıt eldesi

Enerji ihtiyacının büyük bir bölümünü karşılayan fosil yakıt rezervleri hızla tükenmektedir ve bu yakıtların çevresel zararları her geçen gün artmaktadır. Bu sebeple, tüm gelişmiş ve gelişmekte olan ülkeler gibi ülkemiz de yenilenebilir enerji kaynaklarının kullanımına yönelmiştir. Bu kapsamda ülkemizde, yenilenebilir enerji yasası çıkarılarak yenilenebilir enerji kaynaklarının ekonomiye kazandırılması, sürdürülebilir enerji üretiminin desteklenmesi ve çevrenin korunması amaçlanmıştır. Son dönemde önemi artan yenilenebilir enerji kaynaklarından bir tanesi de biyokütle enerjisidir. Biyokütle enerji kaynağı olarak, ana bileşenleri karbonhidrat bileşikleri olan bitkisel ve hayvansal kökenli tüm organik maddeler kullanılabilmektedir. Bu enerji kaynakları içerisinde mikroalgler, yüksek fotosentetik etkinlikleri, yüksek biyokütle üretimleri ve hızlı çoğalmaları gibi avantajlarıyla biyoyakıt üretimi için umut verici görülmektedir. Mikroalglerden, biyokimyasal yöntemler ile elektrik, etanol, hidrojen, metan ve biyodizel üretilebildiği gibi termokimyasal yöntemler kullanılarak da sentez gazı, biyolojik kömür, biyodizel ve elektrik üretilebilmektedir. Bu derleme makalesinde, mikroalglerin izolasyonu, mikroalgal biyokütle üretimi, biyokütlenin hasadında kullanılan yöntemler ve mikroalglerin yenilenebilir biyoyakıtlar için ham madde kaynağı olarak kullanılabilirliği incelenmiştir

Microalgae production and biofuel from microalgae

Fossil fuel reserves which supplying a major portion of energy needs, are depleting rapidly, and its environmental damages increases day by day. Therefore, like all developed and developing countries, our country have focused on the use of renewable energy sources. Within this scope in the our country, it was aimed gain of renewable energy sources to economy, promotion of sustainable energy production, and protection of environmental. Recently, one of the growing importance of renewable energy sources is the biomass energy. As an biomass energy source, all vegetable and animal organic substances which the main components are comprising carbohydrate compounds can be used. In these energy sources, microalgae seem promising for biofuel production due to their many advantages such as they have high photosynthetic efficiency, high biomass production, and they grow quickly. From microalgae, by using biochemical methods electricity, ethanol, hydrogen, methane and biodiesel and thermochemical methods syngas, biochar, biodiesel and electricity can be produced. In this review article, isolation of microalgae, microalgal biomass production, the methods used to biomass harvesting, and the availability of microalgae as a source of raw materials for renewable biofuels were viewed

___

  • 1. Gülüm M., Bilgin A., Çakmak A., Comparison of optimum reaction parameters of corn oil biodiesels produced by using sodium hydroxide (NaOH) and potassium hydroxide (KOH), Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (3), 503-511, 2015.
  • 2. Genç N., Atıkların biyohidrojen üretim potansiyellerinin değerlendirilmesi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 17 (2), 63- 77, 2011.
  • 3. Amponsah N.Y., Troldborg M., Kington B., Aalders I., Hough R.L., Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations, Renewable Sustainable Energy Rev., 39, 461-475, 2014.
  • 4. Singh B., Guldhe A., Rawat I., Bux F., Towards a sustainable approach for development of biodiesel from plant and microalgae, Renewable Sustainable Energy Rev., 29, 216-245, 2014.
  • 5. Boz N., Calcium oxide based heterogeneous catalyst design for the production of methyl esters from canola oil, Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (4), 641-648, 2015.
  • 6. Christenson L., Sims R., Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts, Biotechnol. Adv., 29 (6), 686-702, 2011.
  • 7. Pragya N., Pandey K.K., Sahoo P.K., A review on harvesting, oil extraction and biofuels production technologies from microalgae, Renewable Sustainable Energy Rev., 24, 159-171, 2013.
  • 8. Rashid N., Ur Rehman M.S., Sadiq M., Mahmood T., Han J.-I., Current status, issues and developments in microalgae derived biodiesel production, Renewable Sustainable Energy Rev., 40, 760-778, 2014.
  • 9. Lakaniemi A.M., Microalgal cultivation and utilization in sustainable energy production, Ph. D., Tampere University of Technology, Department of Chemistry and Bioengineering,Tampere, 2012.
  • 10. Farooq W., Suh W.I., Park M.S., Yang J.-W., Water use and its recycling in microalgae cultivation for biofuel application, Bioresour. Technol., 184, 73-81, 2015.
  • 11. Chisti Y., Biodiesel from microalgae, Biotechnol. Adv., 25 (3), 294-306, 2007.
  • 12. Suali E., Sarbatly R., Conversion of microalgae to biofuel, Renewable Sustainable Energy Rev., 16 (6), 4316-4342, 2012.
  • 13. Bahadar A., Bilal Khan M., Progress in energy from microalgae: A review, Renewable Sustainable Energy Rev., 27, 128-148, 2013.
  • 14. Huber G.W., Iborra S., Corma A., Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering, Chem. Rev., 106 (9), 4044-4098, 2006.
  • 15. Zhu L., Biorefinery as a promising approach to promote microalgae industry: An innovative framework, Renewable Sustainable Energy Rev., 41, 1376-1384, 2015.
  • 16. Mata T.M., Martins A.A., Caetano N.S., Microalgae for biodiesel production and other applications: A review, Renewable Sustainable Energy Rev., 14 (1), 217-232, 2010.
  • 17. Singh A., Nigam P.S., Murphy J.D., Mechanism and challenges in commercialisation of algal biofuels, Bioresour. Technol., 102 (1), 26-34, 2011.
  • 18. Medeiros D.L., Sales E.A., Kiperstok A., Energy production from microalgae biomass: carbon footprint and energy balance, J. Cleaner Prod., 96, 493-500, 2015.
  • 19. Xu M., Bernards M., Hu Z., Algae-facilitated chemical phosphorus removal during high-density Chlorella emersonii cultivation in a membrane bioreactor, Bioresour. Technol., 153, 383-387, 2014.
  • 20. Becker E.W., Micro-algae as a source of protein, Biotechnol. Adv., 25 (2), 207-210, 2007.
  • 21. Miao X., Wu Q., High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides, J. Biotechnol., 110 (1), 85-93, 2004.
  • 22. Yeh K.-L., Chang J.-S., Chen W.-m., Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31, Eng. Life Sci., 10 (3), 201-208, 2010.
  • 23. Hariskos I., Posten C., Biorefinery of microalgae - opportunities and constraints for different production scenarios, Biotechnol. J., 9 (6), 739-752, 2014.
  • 24. Kobayashi M., Kakizono T., Yamaguchi K., Nishio N., Nagai S., Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions, J. Ferment. Bioeng., 74 (1), 17- 20, 1992.
  • 25. Wang H., Xiong H., Hui Z., Zeng X., Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids, Bioresour. Technol., 104, 215-220, 2012.
  • 26. Mitra D., van Leeuwen J., Lamsal B., Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products, Algal Res., 1 (1), 40-48, 2012.
  • 27. Kim S., Park J.-e., Cho Y.-B., Hwang S.-J., Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions, Bioresour. Technol., 144, 8-13, 2013.
  • 28. Chen C.-Y., Yeh K.-L., Aisyah R., Lee D.-J., Chang J.- S., Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review, Bioresour. Technol., 102 (1), 71-81, 2011.
  • 29. Abreu A.P., Fernandes B., Vicente A.A., Teixeira J., Dragone G., Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source, Bioresour. Technol., 118, 61-66, 2012.
  • 30. Bruton T., Lyons H., Lerat Y., Stanley M., Rasmussen M.B., A review of the potential of marine algae as a source of biofuel in Ireland, Sustainable Energy Ireland, 1-88, 2009.
  • 31. Knuckey R.M., Brown M.R., Barrett S.M., Hallegraeff G.M., Isolation of new nanoplanktonic diatom strains and their evaluation as diets for juvenile Pacific oysters (Crassostrea gigas), Aquaculture, 211 (1–4), 253-274, 2002.
  • 32. Carioca J.O.B., Hiluy Filho J.J., Leal M.R.L.V., Macambira F.S., The hard choice for alternative biofuels to diesel in Brazil, Biotechnol. Adv., 27 (6), 1043-1050, 2009.
  • 33. Razzak S.A., Hossain M.M., Lucky R.A., Bassi A.S., de Lasa H., Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review, Renewable Sustainable Energy Rev., 27, 622- 653, 2013.
  • 34. Spolaore P., Joannis-Cassan C., Duran E., Isambert A., Commercial applications of microalgae, J. Biosci. Bioeng., 101 (2), 87-96, 2006.
  • 35. Ho S.-H., Nakanishi A., Ye X., Chang J.-S., Hara K., Hasunuma T., Kondo A., Optimizing biodiesel production in marine Chlamydomonas sp JSC4 through metabolic profiling and an innovative salinity-gradient strategy, Biotechnol. Biofuels, 7 (97), 1-16, 2014.
  • 36. Borowitzka M.A., Moheimani N.R., Algae for Biofuels and Energy, Cilt 5, Springer, 978-94-007-5479-9, India, 2013.
  • 37. Cohn F., Zur naturgeschichte des protococcus pluvialis kützing, Nova Acta Academia Leopoldensis Caroliensis, 22, 607, 1850.
  • 38. Famintzin A., Die anorganischen Salze als ausgezeichneted Hülfsmittel zum Studium der Entwicklung niederer chlorophyllhaltiger Organismen, Bull Acad Sci St Petersburg, 17, 31-70, 1871.
  • 39. Beijerinck M.W., Kulturversuche mit Zoochloren, Lichenengonidien und anderen niederen Algen, Bot Z, 48, 725-785, 1890.
  • 40. Harder R., von Witsch H., Bericht über Versuche zur Fettsynthese mittels autotropher Microorganismen, Forschungsdienst Sonderheft, 16, 270-275, 1942a.
  • 41. Harder R., von Witsch H., Die Massenkultur von Diatomeen, Ber Deutsch Bot Ges, 60, 146-152, 1942b.
  • 42. Milner H.W., Possibilities in photosynthetic methods for production of oils and proteins, JAOCS, 28, 363- 367, 1951.
  • 43. Aach H.G., Über Wachstum und Zusammensetzung von Chlorella pyrenoidosa bei unterschiedlichen Lichtstärken und Nitratmengen, Arch Mikrobiol, 17, 213-246, 1952.
  • 44. Oswald W.J., Gotaas H.B., Golueke C.G., Kellen W.R., Algae in waste treatment, Sewage Wastes, 29, 437-457, 1957.
  • 45. Oswald W.J., Golueke C.G., Biological transformation of solar energy, Adv. Appl. Microbiol., 2, 223-262, 1960.
  • 46. Farrar W.V., Tecuitlatl: a glimpse of Aztec food technology, Nature, 211, 341-342, 1966.
  • 47. Johnston H.W., The Biological and Economic Importance of Algae, Part 3. Edible Algae of Fresh and Brackish Waters, Tuatara, 18, 19-24, 1970.
  • 48. Ciferri O., Spirulina, the edible microorganism, Microbiol. Rev., 47, 551-578, 1983.
  • 49. Deng X., Li Y., Fei X., Microalgae: A promising feedstock for biodiesel, African Journal of Microbiology Research, 3 (13), 1008-1014, 2009.
  • 50. Chisti Y., Yan J., Energy from algae: Current status and future trends: Algal biofuels – A status report, Appl. Energy, 88 (10), 3277-3279, 2011.
  • 51. Gendy T.S., El-Temtamy S.A., Commercialization potential aspects of microalgae for biofuel production: An overview, Egypt. J. Pet., 22 (1), 43-51, 2013.
  • 52. Singh J., Gu S., Commercialization potential of microalgae for biofuels production, Renewable Sustainable Energy Rev., 14 (9), 2596-2610, 2010.
  • 53. Rawat I., Ranjith Kumar R., Mutanda T., Bux F., Biodiesel from microalgae: A critical evaluation from laboratory to large scale production, Appl. Energy, 103, 444-467, 2013.
  • 54. Mutanda T., Ramesh D., Karthikeyan S., Kumari S., Anandraj A., Bux F., Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production, Bioresour. Technol., 102 (1), 57-70, 2011.
  • 55. Zhu J., Rong J., Zong B., Factors in mass cultivation of microalgae for biodiesel, Chin. J. Catal., 34 (1), 80-100, 2013.
  • 56. Blanken W., Cuaresma M., Wijffels R.H., Janssen M., Cultivation of microalgae on artificial light comes at a cost, Algal Res., 2 (4), 333-340, 2013.
  • 57. Hidaka T., Inoue K., Suzuki Y., Tsumori J., Growth and anaerobic digestion characteristics of microalgae cultivated using various types of sewage, Bioresour. Technol., 170, 83-89, 2014.
  • 58. Samorì G., Samorì C., Guerrini F., Pistocchi R., Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: Part I, Water Res., 47 (2), 791-801, 2013.
  • 59. de Morais M.G., Costa J.A.V., Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide, Energy Convers. Manage., 48 (7), 2169-2173, 2007.
  • 60. Brennan L., Owende P., Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products, Renewable Sustainable Energy Rev., 14 (2), 557-577, 2010.
  • 61. Chiu S.-Y., Kao C.-Y., Tsai M.-T., Ong S.-C., Chen C.- H., Lin C.-S., Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration, Bioresour. Technol., 100 (2), 833-838, 2009.
  • 62. Widjaja A., Chien C.-C., Ju Y.-H., Study of increasing lipid production from fresh water microalgae Chlorella vulgaris, J. Taiwan Inst. Chem. Eng., 40 (1), 13-20, 2009.
  • 63. Cheirsilp B., Torpee S., Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation, Bioresour. Technol., 110, 510-516, 2012.
  • 64. Blair M.F., Kokabian B., Gude V.G., Light and growth medium effect on Chlorella vulgaris biomass production, J. Environ. Chem. Eng., 2 (1), 665-674, 2014.
  • 65. Gonçalves A.L., Simões M., Pires J.C.M., The effect of light supply on microalgal growth, CO2 uptake and nutrient removal from wastewater, Energy Convers. Manage., 85, 530-536, 2014.
  • 66. Zeng X., Danquah M.K., Chen X.D., Lu Y., Microalgae bioengineering: From CO2 fixation to biofuel production, Renewable Sustainable Energy Rev., 15 (6), 3252-3260, 2011.
  • 67. Kim T.-H., Lee Y., Han S.-H., Hwang S.-J., The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment, Bioresour. Technol., 130, 75-80, 2013.
  • 68. Teo C.L., Atta M., Bukhari A., Taisir M., Yusuf A.M., Idris A., Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths, Bioresour. Technol., 162, 38-44, 2014.
  • 69. Gris B., Morosinotto T., Giacometti G.M., Bertucco A., Sforza E., Cultivation of Scenedesmus obliquus in Photobioreactors: Effects of Light Intensities and LightDark Cycles on Growth, Productivity, and Biochemical Composition, Appl. Biochem. Biotechnol., 172 (5), 2377-2389, 2014.
  • 70. Sharma Y.C., Singh B., Korstad J., A critical review on recent methods used for economically viable and ecofriendly development of microalgae as a potential feedstock for synthesis of biodiesel, Green Chem., 13 (11), 2993-3006, 2011.
  • 71. George B., Pancha I., Desai C., Chokshi K., Paliwal C., Ghosh T., Mishra S., Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus – A potential strain for bio-fuel production, Bioresour. Technol., 171, 367-374, 2014.
  • 72. Wahidin S., Idris A., Shaleh S.R.M., The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp, Bioresour. Technol., 129, 7-11, 2013.
  • 73. Lee C.S., Lee S.-A., Ko S.-R., Oh H.-M., Ahn C.-Y., Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater, Water Res., 68, 680-691, 2015.
  • 74. Arbib Z., Ruiz J., Álvarez-Díaz P., Garrido-Pérez C., Perales J.A., Capability of different microalgae species for phytoremediation processes: Wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production, Water Res., 49, 465-474, 2014.
  • 75. Goiris K., Van Colen W., Wilches I., León-Tamariz F., De Cooman L., Muylaert K., Impact of nutrient stress on antioxidant production in three species of microalgae, Algal Res., 7, 51-57, 2015.
  • 76. Ummalyma S.B., Sukumaran R.K., Cultivation of microalgae in dairy effluent for oil production and removal of organic pollution load, Bioresour. Technol., 165, 295-301, 2014.
  • 77. Ji F., Liu Y., Hao R., Li G., Zhou Y., Dong R., Biomass production and nutrients removal by a new microalgae strain Desmodesmus sp. in anaerobic digestion wastewater, Bioresour. Technol., 161, 200-207, 2014.
  • 78. Chen F., Liu Z., Li D., Liu C., Zheng P., Chen S., Using ammonia for algae harvesting and as nutrient in subsequent cultures, Bioresour. Technol., 121, 298-303, 2012.
  • 79. Nautiyal P., Subramanian K.A., Dastidar M.G., Production and characterization of biodiesel from algae, Fuel Process. Technol., 120, 79-88, 2014.
  • 80. Ashokkumar V., Agila E., Sivakumar P., Salam Z., Rengasamy R., Ani F.N., Optimization and characterization of biodiesel production from microalgae Botryococcus grown at semi-continuous system, Energy Convers. Manage., 88, 936-946, 2014.
  • 81. Raeesossadati M.J., Ahmadzadeh H., McHenry M.P., Moheimani N.R., CO2 bioremediation by microalgae in photobioreactors: Impacts of biomass and CO2 concentrations, light, and temperature, Algal Res., 6, Part A, 78-85, 2014.
  • 82. Muñoz R., Guieysse B., Algal–bacterial processes for the treatment of hazardous contaminants: A review, Water Res., 40 (15), 2799-2815, 2006.
  • 83. Kumar A., Ergas S., Yuan X., Sahu A., Zhang Q., Dewulf J., Malcata F.X., van Langenhove H., Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions, Trends Biotechnol., 28 (7), 371-380, 2010.
  • 84. Wang B., Li Y., Wu N., Lan C.Q., CO(2) bio-mitigation using microalgae, Appl. Microbiol. Biotechnol., 79 (5), 707-718, 2008.
  • 85. Venkata Subhash G., Rohit M.V., Devi M.P., Swamy Y.V., Venkata Mohan S., Temperature induced stress influence on biodiesel productivity during mixotrophic microalgae cultivation with wastewater, Bioresour. Technol., 169, 789-793, 2014.
  • 86. Sakamoto T., Bryant D.A., Growth at low temperature causes nitrogen limitation in the cyanobacterium Synechococcus sp. PCC 7002, Arch. Microbiol., 169 (1), 10-19, 1998.
  • 87. Chokshi K., Pancha I., Trivedi K., George B., Maurya R., Ghosh A., Mishra S., Biofuel potential of the newly isolated microalgae Acutodesmus dimorphus under temperature induced oxidative stress conditions, Bioresour. Technol., 180, 162-171, 2015.
  • 88. Converti A., Casazza A.A., Ortiz E.Y., Perego P., Del Borghi M., Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production, Chem. Eng. Process. Process Intensif., 48 (6), 1146-1151, 2009.
  • 89. Cho S., Lee N., Park S., Yu J., Luong T.T., Oh Y.-K., Lee T., Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources, Bioresour. Technol., 131, 515-520, 2013.
  • 90. Ranga Rao A., Ravishankar G.A., Sarada R., Cultivation of green alga Botryococcus braunii in raceway, circular ponds under outdoor conditions and its growth, hydrocarbon production, Bioresour. Technol., 123, 528- 533, 2012.
  • 91. Zhu L.D., Takala J., Hiltunen E., Wang Z.M., Recycling harvest water to cultivate Chlorella zofingiensis under nutrient limitation for biodiesel production, Bioresour. Technol., 144, 14-20, 2013.
  • 92. de Gouvion Saint Cyr D., Wisniewski C., Schrive L., Farhi E., Rivasseau C., Feasibility study of microfiltration for algae separation in an innovative nuclear effluents decontamination process, Sep. Purif. Technol., 125, 126-135, 2014.
  • 93. Guo Z., Liu Y., Guo H., Yan S., Mu J., Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production, J. Environ. Sci., 25, Supplement 1, S85-S88, 2013.
  • 94. Araujo G.S., Matos L.J.B.L., Fernandes J.O., Cartaxo S.J.M., Gonçalves L.R.B., Fernandes F.A.N., Farias W.R.L., Extraction of lipids from microalgae by ultrasound application: Prospection of the optimal extraction method, Ultrason. Sonochem., 20 (1), 95-98, 2013.
  • 95. Nayak B.K., Das D., Improvement of carbon dioxide biofixation in a photobioreactor using Anabaena sp. PCC 7120, Process Biochem., 48 (8), 1126-1132, 2013.
  • 96. Li Y.-R., Tsai W.-T., Hsu Y.-C., Xie M.-Z., Chen J.-J., Comparison of Autotrophic and Mixotrophic Cultivation of Green Microalgal for Biodiesel Production, Energy Procedia, 52, 371-376, 2014.
  • 97. Mata T.M., Melo A.C., Meireles S., Mendes A.M., Martins A.A., Caetano N.S., Potential of microalgae Scenedesmus obliquus grown in brewery wastewater for biodiesel production, Chem. Eng. Trans., 32, 901-906, 2013.
  • 98. Renaud S.M., Thinh L.-V., Lambrinidis G., Parry D.L., Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures, Aquaculture, 211 (1–4), 195-214, 2002.
  • 99. Wu L.F., Chen P.C., Lee C.M., The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae, Int. Biodeterior. Biodegrad., 85, 506-510, 2013.
  • 100.Ramaraj R., Tsai D.D.-W., Chen P.H., Carbon dioxide fixation of freshwater microalgae growth on natural water medium, Ecol. Eng., 75, 86-92, 2015.
  • 101.Mirón A.S., Garcı́ a M.C.C., Gómez A.C., Camacho F.G.a., Grima E.M., Chisti Y., Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors, Biochem. Eng. J., 16 (3), 287- 297, 2003.
  • 102.Song W., Rashid N., Choi W., Lee K., Biohydrogen production by immobilized Chlorella sp. using cycles of oxygenic photosynthesis and anaerobiosis, Bioresour. Technol., 102 (18), 8676-8681, 2011.
  • 103.Pancha I., Chokshi K., George B., Ghosh T., Paliwal C., Maurya R., Mishra S., Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077, Bioresour. Technol., 156, 146-154, 2014.
  • 104.Courchesne N.M.D., Parisien A., Wang B., Lan C.Q., Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches, J. Biotechnol., 141 (1–2), 31-41, 2009.
  • 105.Gao Y., Yang M., Wang C., Nutrient deprivation enhances lipid content in marine microalgae, Bioresour. Technol., 147, 484-491, 2013.
  • 106.Radakovits R., Jinkerson R.E., Darzins A., Posewitz M.C., Genetic engineering of algae for enhanced biofuel production, Eukaryotic Cell, 9 (4), 486-501, 2010.
  • 107.Zhila N.O., Kalacheva G.S., Volova T.G., Influence of nitrogen deficiency on biochemical composition of the green alga Botryococcus, J. Appl. Phycol., 17 (4), 309- 315, 2005.
  • 108.Guo F., Wang H., Wang J., Zhou W., Gao L., Chen L., Dong Q., Zhang W., Liu T., Special biochemical responses to nitrogen deprivation of filamentous oleaginous microalgae Tribonema sp, Bioresour. Technol., 158, 19-24, 2014.
  • 109.Schenk P.M., Thomas-Hall S.R., Stephens E., Marx U.C., Mussgnug J.H., Posten C., Kruse O., Hankamer B., Second generation biofuels: high-efficiency microalgae for biodiesel production, Bioenergy Res., 1 (1), 20-43, 2008.
  • 110.Breuer G., Lamers P.P., Martens D.E., Draaisma R.B., Wijffels R.H., The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains, Bioresour. Technol., 124, 217-226, 2012.
  • 111.Ruiz-Martinez A., Serralta J., Pachés M., Seco A., Ferrer J., Mixed microalgae culture for ammonium removal in the absence of phosphorus: Effect of phosphorus supplementation and process modeling, Process Biochem., 49 (12), 2249-2257, 2014.
  • 112.Singh P., Guldhe A., Kumari S., Rawat I., Bux F., Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology, Biochem. Eng. J., 94, 22-29, 2015.
  • 113.Liang K., Zhang Q., Gu M., Cong W., Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp, J. Appl. Phycol., 25 (1), 311- 318, 2013.
  • 114.Cai T., Park S.Y., Li Y.B., Nutrient recovery from wastewater streams by microalgae: Status and prospects, Renewable Sustainable Energy Rev., 19, 360- 369, 2013.
  • 115.Laliberté G., Lessard P., de la Noüe J., Sylvestre S., Effect of phosphorus addition on nutrient removal from wastewater with the cyanobacterium Phormidium bohneri, Bioresour. Technol., 59 (2–3), 227-233, 1997.
  • 116.Feng P., Deng Z., Fan L., Hu Z., Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations, J. Biosci. Bioeng., 114 (4), 405-410, 2012.
  • 117.Sun Z., Liu J., Zeng X., Huangfu J., Jiang Y., Wang M., Chen F., Astaxanthin is responsible for antiglycoxidative properties of microalga Chlorella zofingiensis, Food Chem., 126 (4), 1629-1635, 2011.
  • 118.Islam M.A., Magnusson M., Brown R.J., Ayoko G.A., Nabi M.N., Heimann K., Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles, Energies, 6 (11), 5676-5702, 2013.
  • 119.Caporgno M.P., Olkiewicz M., Torras C., Salvadó J., Clavero E., Bengoa C., Effect of pre-treatments on the production of biofuels from Phaeodactylum tricornutum, J. Environ. Manage., 177, 240-246, 2016.
  • 120.Teo S.H., Islam A., Yusaf T., Taufiq-Yap Y.H., Transesterification of Nannochloropsis oculata microalga's oil to biodiesel using calcium methoxide catalyst, Energy, 78, 63-71, 2014.
  • 121.Kandilian R., Lee E., Pilon L., Radiation and optical properties of Nannochloropsis oculata grown under different irradiances and spectra, Bioresour. Technol., 137, 63-73, 2013.
  • 122.Boussiba S., Vonshak A., Cohen Z., Avissar Y., Richmond A., Lipid and biomass production by the halotolerant microalga Nannochloropsıs salina, Biomass, 12 (1), 37-47, 1987.
  • 123.Chatsungnoen T., Chisti Y., Continuous flocculationsedimentation for harvesting Nannochloropsis salina biomass, J. Biotechnol., 222, 94-103, 2016.
  • 124.Marudhupandi T., Sathishkumar R., Kumar T.T.A., Heterotrophic cultivation of Nannochloropsis salina for enhancing biomass and lipid production, Biotechnol. Rep., 10, 8-16, 2016.
  • 125.Ebrahimian A., Kariminia H.-R., Vosoughi M., Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater, Renewable Energy, 71, 502-508, 2014.
  • 126.Gao F., Yang Z.-H., Li C., Zeng G.-M., Ma D.-H., Zhou L., A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent, Bioresour. Technol., 179, 8-12, 2015.
  • 127.Xaaldi Kalhor A., Mohammadi Nassab A.D., Abedi E., Bahrami A., Movafeghi A., Biodiesel production in crude oil contaminated environment using Chlorella vulgaris, Bioresour. Technol., 222, 190-194, 2016.
  • 128.Jayappriyan K.R., Rajkumar R., Venkatakrishnan V., Nagaraj S., Rengasamy R., In vitro anticancer activity of natural β-carotene from Dunaliella salina EU5891199 in PC-3 cells, Biomedicine & Preventive Nutrition, 3 (2), 99-105, 2013.
  • 129.Imamoglu E., Demirel Z., Dalay M.C., Evaluation of culture conditions of locally isolated Dunaliella salina strain EgeMacc-024, Biochem. Eng. J., 92, 22-27, 2014.
  • 130.Zhang L., Chen L., Wang J., Chen Y., Gao X., Zhang Z., Liu T., Attached cultivation for improving the biomass productivity of Spirulina platensis, Bioresour. Technol., 181, 136-142, 2015.
  • 131.Andemichael H., Lee J.W., Toxicological study of biofuel ethanol with blue green alga Spirulina platensis, Algal Res., 18, 110-115, 2016.
  • 132.Chan M.-C., Ho S.-H., Lee D.-J., Chen C.-Y., Huang C.- C., Chang J.-S., Characterization, extraction and purification of lutein produced by an indigenous microalga Scenedesmus obliquus CNW-N, Biochem. Eng. J., 78, 24-31, 2013.
  • 133.Kim K., Jung J.-Y., Shin H., Choi S.-A., Kim D., Bai S.C., Chang Y.K., Han J.-I., Harvesting of Scenedesmus obliquus using dynamic filtration with a perforated disk, J. Membr. Sci., 517, 14-20, 2016.
  • 134.Abomohra A.E.-F., Jin W., El-Sheekh M., Enhancement of lipid extraction for improved biodiesel recovery from the biodiesel promising microalga Scenedesmus obliquus, Energy Convers. Manage., 108, 23-29, 2016.
  • 135.Chiang C.-L., Lee C.-M., Chen P.-C., Utilization of the cyanobacteria Anabaena sp. CH1 in biological carbon dioxide mitigation processes, Bioresour. Technol., 102 (9), 5400-5405, 2011.
  • 136.Jana A., Bhattacharya P., Swarnakar S., Majumdar S., Ghosh S., Anabaena sp. mediated bio-oxidation of arsenite to arsenate in synthetic arsenic (III) solution: Process optimization by response surface methodology, Chemosphere, 138, 682-690, 2015.
  • 137.Marques A.E., Barbosa A.T., Jotta J., Coelho M.C., Tamagnini P., Gouveia L., Biohydrogen production by Anabaena sp. PCC 7120 wild-type and mutants under different conditions: Light, nickel, propane, carbon dioxide and nitrogen, Biomass Bioenergy, 35 (10), 4426-4434, 2011.
  • 138.Michels M.H.A., Camacho-Rodríguez J., Vermuë M.H., Wijffels R.H., Effect of cooling in the night on the productivity and biochemical composition of Tetraselmis suecica, Algal Res., 6, 145-151, 2014.
  • 139.Wong D.M., Nguyen T.T.N., Franz A.K., Ethylenediaminetetraacetic acid (EDTA) enhances intracellular lipid staining with Nile red in microalgae Tetraselmis suecica, Algal Res., 5, 158-163, 2014.
  • 140.Lavens P., Sorgeloos P., Manual on the production and use of live food for aquaculture, FAO Fisheries, 361, 1- 295, 1996.
  • 141.Katarzyna L., Sai G., Singh O.A., Non-enclosure methods for non-suspended microalgae cultivation: literature review and research needs, Renewable Sustainable Energy Rev., 42, 1418-1427, 2015.
  • 142.Eriksen N.T., The technology of microalgal culturing, Biotechnol. Lett, 30 (9), 1525-1536, 2008.
  • 143.Pawlowski A., Mendoza J.L., Guzmán J.L., Berenguel M., Acién F.G., Dormido S., Effective utilization of flue gases in raceway reactor with event-based pH control for microalgae culture, Bioresour. Technol., 170, 1-9, 2014.
  • 144.De Bhowmick G., Subramanian G., Mishra S., Sen R., Raceway pond cultivation of a marine microalga of Indian origin for biomass and lipid production: A case study, Algal Res., 6, Part B, 201-209, 2014.
  • 145.Komolafe O., Velasquez Orta S.B., Monje-Ramirez I., Noguez I.Y., Harvey A.P., Orta Ledesma M.T., Biodiesel production from indigenous microalgae grown in wastewater, Bioresour. Technol., 154, 297- 304, 2014.
  • 146.Bartley M.L., Boeing W.J., Corcoran A.A., Holguin F.O., Schaub T., Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms, Biomass Bioenergy, 54, 83-88, 2013.
  • 147.Shaleh S.R.M., Optimum growth parameters for both indoor and outdoor propagation of microalgae, Chlorella vulgaris and Isochrysis galbana, Ph. D., Universiti Putra Malaysia, Department of Science, Serdang, 2004.
  • 148.Fathi M., Asem A., Investigating the impact of NaCl salinity on growth, β-carotene, and chlorophyll a in the content life of halophytes of algae Chlorella sp., AACL Bioflux, 6 (3), 241-245, 2013.
  • 149.Abu-Rezq T.S., Al-Musallam L., Al-Shimmari J., Dias P., Optimum production conditions for different highquality marine algae, Hydrobiologia, 403, 97-107, 1999.
  • 150.Oncel S.S., Microalgae for a macroenergy world, Renewable Sustainable Energy Rev., 26, 241-264, 2013.
  • 151.Ruangsomboon S., Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2, Bioresour. Technol., 109, 261-265, 2012.
  • 152.Khan S.A., Rashmi, Hussain M.Z., Prasad S., Banerjee U.C., Prospects of biodiesel production from microalgae in India, Renewable Sustainable Energy Rev., 13 (9), 2361-2372, 2009.
  • 153.Demirbas A., Use of algae as biofuel sources, Energy Convers. Manage., 51 (12), 2738-2749, 2010. 154.Sánchez Mirón A., Contreras Gómez A., Garcı́ a Camacho F., Molina Grima E., Chisti Y., Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae, J. Biotechnol., 70 (1–3), 249-270, 1999.
  • 155.Molina E., Fernández J., Acién F.G., Chisti Y., Tubular photobioreactor design for algal cultures, J. Biotechnol., 92 (2), 113-131, 2001.
  • 156.Watanabe Y., Saiki H., Development of a photobioreactor incorporating Chlorella sp. for removal of CO2 in stack gas, Energy Convers. Manage., 38, Supplement, S499-S503, 1997.
  • 157.Ugwu C.U., Ogbonna J.C., Tanaka H., Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers, Appl. Microbiol. Biotechnol., 58 (5), 600-607, 2002.
  • 158.Zhang X., Zhou B.C., Zhang Y.P., Cai Z.L., Cong W., Fan O.Y., A simple and low-cost airlift photobioreactor for microalgal mass culture, Biotechnol. Lett, 24 (21), 1767-1771, 2002.
  • 159.Huntley M.E., Redalje D.G., CO2 mitigation and renewable oil from photosynthetic microbes: A new appraisal, Mitig. adapt. strategies glob. chang. , 12 (4), 573-608, 2006.
  • 160.Sato T., Usui S., Tsuchiya Y., Kondo Y., Invention of outdoor closed type photobioreactor for microalgae, Energy Convers. Manage., 47 (6), 791-799, 2006.
  • 161.Chini Zittelli G., Rodolfi L., Biondi N., Tredici M.R., Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns, Aquaculture, 261 (3), 932-943, 2006.
  • 162.Ge Y., Liu J., Tian G., Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor, Bioresour. Technol., 102 (1), 130-134, 2011.
  • 163.Acién Fernández F.G., Fernández Sevilla J.M., Sánchez Pérez J.A., Molina Grima E., Chisti Y., Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance, Chem. Eng. Sci., 56 (8), 2721-2732, 2001.
  • 164.López M.C.G.-M., Sánchez E.D.R., López J.L.C., Fernández F.G.A., Sevilla J.M.F., Rivas J., Guerrero M.G., Grima E.M., Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors, J. Biotechnol., 123 (3), 329-342, 2006.
  • 165.Masojidek J., Papacek S., Sergejevova M., Jirka V., Cerveny J., Kunc J., Korecko J., Verbovikova O., Kopecky J., Stys D., Torzillo G., A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: basic design and performance, J. Appl. Phycol., 15 (2-3), 239-248, 2003.
  • 166.da Silva T.L., Reis A., Medeiros R., Oliveira A.C., Gouveia L., Oil Production Towards Biofuel from Autotrophic Microalgae Semicontinuous Cultivations Monitorized by Flow Cytometry, Appl. Biochem. Biotechnol., 159 (2), 568-578, 2009.
  • 167.167. Uduman N., Qi Y., Danquah M.K., Forde G.M., Hoadley A., Dewatering of microalgal cultures: A major bottleneck to algae-based fuels, J. Renewable Sustainable Energy 2(1), 2010.
  • 168.Barros A.I., Gonçalves A.L., Simões M., Pires J.C.M., Harvesting techniques applied to microalgae: A review, Renewable Sustainable Energy Rev., 41, 1489-1500, 2015.
  • 169.Molina Grima E., Belarbi E.H., Acién Fernández F.G., Robles Medina A., Chisti Y., Recovery of microalgal biomass and metabolites: process options and economics, Biotechnol. Adv., 20 (7–8), 491-515, 2003.
  • 170.Danquah M.K., Gladman B., Moheimani N., Forde G.M., Microalgal growth characteristics and subsequent influence on dewatering efficiency, Chem. Eng. J., 151 (1–3), 73-78, 2009.
  • 171.Rawat I., Ranjith Kumar R., Mutanda T., Bux F., Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production, Appl. Energy, 88 (10), 3411-3424, 2011.
  • 172.Zhang X., Hu Q., Sommerfeld M., Puruhito E., Chen Y., Harvesting algal biomass for biofuels using ultrafiltration membranes, Bioresour. Technol., 101 (14), 5297-5304, 2010.
  • 173.Zhang W., Zhang W., Zhang X., Amendola P., Hu Q., Chen Y., Characterization of dissolved organic matters responsible for ultrafiltration membrane fouling in algal harvesting, Algal Res., 2 (3), 223-229, 2013.
  • 174.Schlesinger A., Eisenstadt D., Bar-Gil A., Carmely H., Einbinder S., Gressel J., Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production, Biotechnol. Adv., 30 (5), 1023-1030, 2012.
  • 175.Vandamme D., Foubert I., Muylaert K., Flocculation as a low-cost method for harvesting microalgae for bulk biomass production, Trends Biotechnol., 31 (4), 233- 239, 2013.
  • 176.Papazi A., Makridis P., Divanach P., Harvesting Chlorella minutissima using cell coagulants, J. Appl. Phycol., 22 (3), 349-355, 2010.
  • 177.Xu Y., Purton S., Baganz F., Chitosan flocculation to aid the harvesting of the microalga Chlorella sorokiniana, Bioresour. Technol., 129, 296-301, 2013.
  • 178.Kurniawati H.A., Ismadji S., Liu J.C., Microalgae harvesting by flotation using natural saponin and chitosan, Bioresour. Technol., 166, 429-434, 2014.
  • 179.Beach E.S., Eckelman M.J., Cui Z., Brentner L., Zimmerman J.B., Preferential technological and life cycle environmental performance of chitosan flocculation for harvesting of the green algae Neochloris oleoabundans, Bioresour. Technol., 121, 445-449, 2012.
  • 180.Renault F., Sancey B., Badot P.M., Crini G., Chitosan for coagulation/flocculation processes – An eco-friendly approach, Eur. Polym. J., 45 (5), 1337-1348, 2009.
  • 181.Rashid N., Rehman M.S.U., Han J.-I., Use of chitosan acid solutions to improve separation efficiency for harvesting of the microalga Chlorella vulgaris, Chem. Eng. J., 226, 238-242, 2013.
  • 182.Salim S., Bosma R., Vermuë M.H., Wijffels R.H., Harvesting of microalgae by bio-flocculation, J. Appl. Phycol., 23, 849-855, 2011.
  • 183.Hanotu J., Bandulasena H.C.H., Zimmerman W.B., Microflotation performance for algal separation, Biotechnol. Bioeng., 109 (7), 1663-1673, 2012.
  • 184.Liu J.C., Chen Y.M., Ju Y.H., Separation of algal cells from water by column flotation, Sep. Sci. Technol., 34 (11), 2259-2272, 1999.
  • 185.Rubio J., Souza M.L., Smith R.W., Overview of flotation as a wastewater treatment technique, Miner. Eng., 15 (3), 139-155, 2002.
  • 186.Zenouzi A., Ghobadian B., Hejazi M.A., Rahnemoon P., Harvesting of microalgae Dunaliella salina using electroflocculation, Journal of Agric
  • 187.Zhou W., Min M., Hu B., Ma X., Liu Y., Wang Q., Shi J., Chen P., Ruan R., Filamentous fungi assisted bioflocculation: A novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells, Sep. Purif. Technol., 107, 158-165, 2013.
  • 188.Bilad M.R., Vandamme D., Foubert I., Muylaert K., Vankelecom I.F.J., Harvesting microalgal biomass using submerged microfiltration membranes, Bioresour. Technol., 111, 343-352, 2012.
  • 189.Bilad M.R., Discart V., Vandamme D., Foubert I., Muylaert K., Vankelecom I.F.J., Harvesting microalgal biomass using a magnetically induced membrane vibration (MMV) system: Filtration performance and energy consumption, Bioresour. Technol., 138, 329- 338, 2013.
  • 190.Gürel L., Büyükgüngör H., Kütle aktarımının membran sistemlerindeki rolü, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 21 (6), 224-238, 2015.
  • 191.Bilad M.R., Arafat H.A., Vankelecom I.F.J., Membrane technology in microalgae cultivation and harvesting: A review, Biotechnol. Adv., 32 (7), 1283-1300, 2014.
  • 192.Buckwalter P., Embaye T., Gormly S., Trent J.D., Dewatering microalgae by forward osmosis, Desalination, 312, 19-22, 2013.
  • 193.Trent J.D., Gormly S.J., Delzeit L.D., Flynn M.T., Embaye T.N., Algae bioreactor using submerged enclosures with semi-permeable membranes, in United States patent application US 20100216203, US. 2010.
  • 194.Dor I., High density, dialysis culture of algae on sewage, Water Res., 9 (3), 251-254, 1975.
  • 195.Bhave R., Kuritz T., Powell L., Adcock D., Membranebased energy efficient dewatering of microalgae in biofuels production and recovery of value added coproducts, Environ. Sci. Technol., 46 (10), 5599-5606, 2012.
  • 196.Mubarak M., Shaija A., Suchithra T.V., A review on the extraction of lipid from microalgae for biodiesel production, Algal Res., 7, 117-123, 2015.
  • 197.Halim R., Danquah M.K., Webley P.A., Extraction of oil from microalgae for biodiesel production: A review, Biotechnol. Adv., 30 (3), 709-732, 2012.
  • 198.Teo C.L., Idris A., Enhancing the various solvent extraction method via microwave irradiation for extraction of lipids from marine microalgae in biodiesel production, Bioresour. Technol., 171, 477-481, 2014.
  • 199.Keris-Sen U.D., Sen U., Soydemir G., Gurol M.D., An investigation of ultrasound effect on microalgal cell integrity and lipid extraction efficiency, Bioresour. Technol., 152, 407-413, 2014.
  • 200.Harun R., Singh M., Forde G.M., Danquah M.K., Bioprocess engineering of microalgae to produce a variety of consumer products, Renewable Sustainable Energy Rev., 14 (3), 1037-1047, 2010.
  • 201.Hossain A.S., Salleh A., Boyce A.N., Chowdhury P., Naqiuddin M., Biodiesel fuel production from algae as renewable energy, Am. J. Biochem. Biotechnol., 4 (3), 250-254, 2008.
  • 202.Li Y., Lian S., Tong D., Song R., Yang W., Fan Y., Qing R., Hu C., One-step production of biodiesel from Nannochloropsis sp. on solid base Mg–Zr catalyst, Appl. Energy, 88 (10), 3313-3317, 2011.
  • 203.Cheng J., Huang R., Li T., Zhou J., Cen K., Biodiesel from wet microalgae: Extraction with hexane after the microwave-assisted transesterification of lipids, Bioresour. Technol., 170, 69-75, 2014.
  • 204.Patil P.D., Gude V.G., Mannarswamy A., Cooke P., Nirmalakhandan N., Lammers P., Deng S., Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions, Fuel, 97, 822-831, 2012.
  • 205.Ma G., Hu W., Pei H., Jiang L., Song M., Mu R., In situ heterogeneous transesterification of microalgae using combined ultrasound and microwave irradiation, Energy Convers. Manage., 90, 41-46, 2015.
  • 206.Gülyurt M.Ö., Özçimen D., İnan B., Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification, Int. J. Mol. Sci., 17 (4), 579, 2016.
  • 207.Macías-Sánchez M.D., Robles-Medina A., Hita-Peña E., Jiménez-Callejón M.J., Estéban-Cerdán L., González-Moreno P.A., Molina-Grima E., Biodiesel production from wet microalgal biomass by direct transesterification, Fuel, 150, 14-20, 2015.
  • 208.Huang J., Xia J., Jiang W., Li Y., Li J., Biodiesel production from microalgae oil catalyzed by a recombinant lipase, Bioresour. Technol., 180, 47-53, 2015.
  • 209.Martinez-Guerra E., Gude V.G., Mondala A., Holmes W., Hernandez R., Microwave and ultrasound enhanced extractive-transesterification of algal lipids, Appl. Energy, 129, 354-363, 2014.
  • 210.Azcan N., Yilmaz O., Microwave irradiation application in biodiesel production from promising biodiesel feedstock: microalgae (Chlorella protothecoides), Proc. World Congr. Eng. Comput. Sci., San Fransisco 2,737- 742, October 24-26, 2012.
  • 211.Rashid N., Rehman M.S.U., Memon S., Ur Rahman Z., Lee K., Han J.-I., Current status, barriers and developments in biohydrogen production by microalgae, Renewable Sustainable Energy Rev., 22, 571-579, 2013.
  • 212.Zhang L.P., Melis A., Probing green algal hydrogen production, Philos. Trans. R. Soc. Lond. B Biol. Sci., 357, 1499-1511, 2002.
  • 213.Kruse O., Rupprecht J., Bader K.P., Thomas-Hall S., Schenk P.M., Finazzi G., Hankamer B., Improved photobiological H-2 production in engineered green algal cells, J. Biol. Chem., 280 (40), 34170-34177, 2005.
  • 214.Torzillo G., Scoma A., Faraloni C., Ena A., Johanningmeier U., Increased hydrogen photoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant, Int. J. Hydrogen Energy, 34 (10), 4529-4536, 2009.
  • 215.Kawaguchi H., Hashimoto K., Hirata K., Miyamoto K., H-2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus, J. Biosci. Bioeng., 91 (3), 277-282, 2001.
  • 216.Ueno Y., Kurano N., Miyachi S., Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale, J. Ferment. Bioeng., 86 (1), 38- 43, 1998.
  • 217.Wu F.-C., Wu J.-Y., Liao Y.-J., Wang M.-Y., Shih I.-L., Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass, Bioresour. Technol., 156, 123-131, 2014.
  • 218.Harun R., Danquah M.K., Influence of acid pretreatment on microalgal biomass for bioethanol production, Process Biochem., 46 (1), 304-309, 2011.
  • 219.Borines M.G., de Leon R.L., Cuello J.L., Bioethanol production from the macroalgae Sargassum spp, Bioresour. Technol., 138, 22-29, 2013.
  • 220.Lee J.y., Li P., Lee J., Ryu H.J., Oh K.K., Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation, Bioresour. Technol., 127, 119-125, 2013.
  • 221.Harun R., Jason W.S.Y., Cherrington T., Danquah M.K., Exploring alkaline pre-treatment of microalgal biomass for bioethanol production, Appl. Energy, 88 (10), 3464-3467, 2011.
  • 222.Vergara-Fernández A., Vargas G., Alarcón N., Velasco A., Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system, Biomass Bioenergy, 32 (4), 338-344, 2008.
  • 223.Chynoweth D.P., Renewable biomethane from land and ocean energy crops and organic wastes, Hortscience, 40 (2), 283-286, 2005.
  • 224.Bird K., Chynoweth D., Jerger D., Effects of marine algal proximate composition on methane yields, J. Appl. Phycol., 2 (3), 207-213, 1990.
  • 225.Morand P., Briand X., Anaerobic digestion of Ulva sp. 2. Study of Ulva degradation and methanisation of liquefaction juices, J. Appl. Phycol., 11 (2), 165-177, 1999.
  • 226.Briand X., Morand P., Anaerobic digestion of Ulva sp. 1. Relationship between Ulva composition and methanisation, J. Appl. Phycol., 9 (6), 511-524, 1997.
  • 227.Otsuka K., Yoshino A., A fundamental study on anaerobic digestion of sea lettuce, Oceans '04. Mtts/Ieee Techno-Ocean '04, Kobe, 1770-1773, November 9-12, 2004.