CANDU reaktörlerinde $ThO_2$ ve $^{233}UO_2$ yakıt karışımı kullanımının incelenmesi

Bu çalışmada; $(Th+^{233}U)O_2$ yakıt karışımının CANDU reaktörlerinde kullanılabilirliği ve reaktör başarımına etkisi araştırılmıştır. Bunun için yakıt olarak %98 $ThO_2$ + %2 $^{233}UO_2$ yakıt karışımı kullanılmıştır. Nötronik veriler, tek boyutlu SCALE 4.4a nükleer hesaplama kodu yardımıyla elde edilmiştir. Reaktör kritiklik ve yanma derecesi değerleri tam güçte 20 yıl için hesaplanmıştır. Yapılan hesaplamalar sonucunda, reaktör kritikliğinin $k_{infty}$=~1,3 le başladığı ve 2. yıl sonundan itibaren 20 yıl boyunca $k_{infty}$=1,06 sınır değerinin üzerinde olduğu görülmüştür. Yanma derecesi 2. yıl sonunda 45.216 MW.D/MT ve 20. yılın sonunda 558.061 MW.D/MT gibi çok yüksek bir değer elde edilmiştir. Bu çalışma, toryumun çok düşük oranda (%2) fisil izotop karışımlarıyla CANDU reaktörlerinde yakıt olarak kullanılabileceğini göstermektedir.

Investigation utilization of $ThO_2$ and $^{233}UO_2$ fuel mixture in CANDU reactors

In this study, applicability of mixed $(Th+^{233}U)O_2$ fuel in the CANDU reactors and influence on the reactor performance was investigated. In order to achieve this purpose, mixed 98 % $ThO_2$ + 2 % $^{233}UO_2$ fuel was used. Neutronic data were calculated by using the aid of one dimensional computer system code of SCALE 4.4a. The criticality and the burn-up values of the reactor were been calculated by full power operation for a period of 20 years. The results showed that the during criticality started by $k_{infty}$=~1,3 and after the second year it remained above $k_{infty}$=1,06 for 20 years. Burn-up grades were calculated as 45.216 MW.D/MT after the second year and as 558.061 MW.D/MT after the twentieth year. This study showed that a few percent (2%) fissile izotopes mixed with thorium would make it possible to run the CANDU reactor.

___

  • 1. Choi, H. B., Rhee, B. W., Park, H. S., “Physics Study on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU (DUPIC)”, Nuclear Science and Engineering, Cilt 126, 80, 1997.
  • 2. Choi, H., Ko, W. I., Yang, M. S., “Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors-I: DUPIC Fuel Fabrication Cost”, Nuclear Technology, Cilt 134, 110-129, 2001.
  • 3. Choi, H., Ko, W. I., Yang, M. S., Namgung, I., Na, B.G., “Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors-II: DUPIC Fuel-Handling Cost”, Nuclear Technology, Cilt 134, 130-148, 2001.
  • 4. Kim, D.H., Choi, H., Yang W.S., Kim, J.K., “Composition Heterogenetiy Analysis for Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors (DUPIC)-I: Deterministic Analysis” Nuclear Science and Engineering, Cilt 137, 23-27, 2001.
  • 5. Şahin, S., Şahin, H.M., Alkan, M., Yıldız, K., “An Assessment of Thorium and Spent LWR-Fuel Utilization Potential in CANDU Reactors”, Energy Conversion and Management, Cilt 45, 1067-1085, 2004.
  • 6. Alkan, M., “Reutilization of Nuclear Fuel Wastes”, PhD Thesis in Turkish, Gazi University, Institute of Science and Technology, Ankara, Turkey, 2003.
  • 7. Şahin, S., Yapıcı, H., “Rejuvenation of LWR Spent Fuel in Fusion Blankets” Annals of Nuclear Energy, Cilt 25, No 16, 1317-1339, 1998.
  • 8. Şahin, S., Übeyli, M., “LWR spent fuel transmutation in a high power density fusion reactor” Annals of Nuclear Energy, Cilt 31, No 8, 871-890, 2004.
  • 9. Übeyli, M., “Transmutation of Minor Actinides Discharged from LMFBR Spent Fuel in a High Power Density Fusion Reactor”, Energy Conversion and Management, Cilt 45, 3219-3238, 2004.
  • 10. Ünalan, S., Ayata, T., Akansu, S. O., Erişen, A., Bölükbaşı, A., “Light and heavy water cooled hybrid reactors for rejuvenation of LWR spent fuels”, Energy Conversion & Management, Cilt 44, 2567-2587, 2003.
  • 11. Şahin, S., Yapıcı, H., “Rejuvenation Of Light Water Reactor Spent Fuel In Fusion Blankets”, Annals of Nuclear Energy, Cilt 25, 1317-1339, 1998.
  • 12. Ünalan, S., “Rejuvenation of the LWR spent fuel in (D–T) driven hybrid reactors”, Fusion Engineering and Design, Cilt 38, 393-416, 1998.
  • 13. Şahin, S., Yapıcı, H., “Neutronic analysis of a thorium fusion breederwith enhanced protection against nuclear weapon proliferation”, Annals of Nuclear Energy, Cilt 26, 13-27, 1999.
  • 14. Yapıcı, H., Şahin, N., Bayrak, M., “Investigation of neutronic potential of a moderated (D-T) fusion driven hybrid reactor fueled with thorium to breed fissile fuel for LWRs”, Energy Conversion & Management, Cilt 41, 435-447, 2000.
  • 15. Şahin, S., Özceyhan, V., Yapıcı, H., “Proliferation hardening and power flattening of a thorium fusion breeder with triple mixed oxide fuel.”, Annals of Nuclear Energy, Cilt 28, 203, 2001.
  • 16. Yapıcı H., Übeyli M., Yalçın Ş., “Neutronic analysis of PROMETHEUS reactor fueled with various compounds of thorium and uranium”, Annals of Nuclear Energy, Cilt 29, 1871-1889, 2002.
  • 17. İpek O., “Analysis of the neutronic data in infinite medium using fusion neutron source for various material compositions”, Energy Conversion & Management, Cilt 44, 439-458, 2003.
  • 18. Akansu S. O., Ünalan S., “Investigation of the flattened fissile fuel enrichment possibility with a (D,T) driven hybrid blanket cooled by flibe (Li2BeF4 )”, Annals of Nuclear Energy, Cilt 29, 287-302, 2002.
  • 19. İpek O., “Investigation of the in .nite medium integral neutronic data for incident fusion source neutrons”, Annals of Nuclear Energy, Cilt 29, 1505-1523, 2002.
  • 20. Yapıcı H., İpek O., Übeyli M., “Investigation of the performance parameters and temperature distribution in fuel rod dependent on operation periods and first wall loads in fusion-fission reactor system fueled with $ThO_2$”, Energy Conversion & Management, Cilt 44, 573-595, 2003.
  • 21. Yapıcı H., Bayrak M., “Neutronic analysis of denaturing plutonium in a thorium fusion breeder and power flattening”, Energy Conversion & Management, Cilt 46, 1209-1228, 2005.
  • 22. Yapıcı H., İpek O., “Neutronic performance of coupled hybrid blanket fueled with $ThO_2$ and $UO_2$”, Energy Conversion & Management, Cilt 44, 1853-1873, 2003.
  • 23. Şahin S., Yapıcı H., Şahin N., “Neutronic performance of proliferation hardened thorium fusion breeders”, Fusion Engineering and Design, Cilt 54, 63-77, 2001.
  • 24. Şahin, S., Şahin, H.M., Sözen A., Bayrak M., “Power flattening and minor actinide burning in a thorium fusion breeder”, Energy Conversion & Management, Cilt 43, 799-815, 2002.
  • 25. Yapıcı H., “Power flattening of an inertial fusion energy breeder with mixed ThO2- UO2 fuel”, Fusion Engineering and Design, Cilt 65, 89-108,2003.
  • 26. Şahin S., Yapıcı H., Bayrak M., “Spent mixed oxide fuel rejuvenation in fusion breeders”, Fusion Engineering and Design, Cilt 47, 9-23, 1999.
  • 27. Boczar, P. G., Chan, P. S. W., Dyck, G. R., Ellis, R. J., Jones, R. T., Sullivan, J. D., Taylor, P., “Thorium Fuel-Cycle Studies for CANDU Reactors, Thorium Fuel Utilization: Options and Trends”, Proceedings of three IEAE meetings held in Vienna in 1997, 1998 and 1999, IEAETECDOC- 1319, 25-41, 2002.
  • 28. Boczar, P. G., Dyck, G. R., Chan, P. S. W., Buss, D. B., “Recent Advances in Thorium Fuel Cycles for CANDU Reactors, Thorium Fuel Utilization: Options and Trends”, Proceedings of three IEAE meetings held in Vienna in 1997, 1998 and 1999, IEAE-TECDOC-1319, 104-120, 2002.
  • 29. Critoph, E., “Prospects for Self–sufficient Equilibrium Thorium Cycles in CANDU Reactors”, Atomic Energy of Canada Ltd., Report AECL-5501, 1976.
  • 30. Galperin, A., Todosow, M., “Assessment of Homogeneous Thorium/Uranium Fuel for Pressurized Water Reactors”, Nuclear Technology, Cilt 138, 111-121, 2002.
  • 31. Hatcher, S. R., “Thorium Cycle in Heavy Water Moderated Pressure Tube (CANDU) Reactors”, Atomic Energy of Canada Ltd., Report AECL-5398, 1976.
  • 32. IAEA. “Status and Prospects of Thermal Breeders and their Effect on Fuel Utilization”, Technical Report Series No. 195, International Atomic Energy Agency, Vienna, 1979.
  • 33. Loewen, E. P., Wilson, R. D., Hohorst, J.K., Kumar, A.S., “Preliminary Frapcon-3th Steady- State Fuel Analysis of ThO2 and $UO_2$ Fuel