Bina düşey kabuğunda fotovoltaik panellerinin kullanım ilkeleri

Enerji etkin binalar konusunda son yirmi yılda büyük ilerlemeler olmasına rağmen, pasif ve aktif yaklaşımlar gelişme sürecinin henüz başlangıcı olarak görülmektedir. Enerji etkinliğini arttırırken aynı zamanda elektrik üreten fotovoltaik (PV) panellerin yapılara entegre edilmesi, yapı teknolojisini bir ileri aşamaya götürmektedir. PV'lerde ve yapı teknolojilerinde son yıllarda görülen eğilim PV'lerin yapı ürünü olacağını göstermektedir. Bu yaklaşımla yapı kabuğu enerji tüketen bir yapı elemanı olmaktan çıkarak, enerji üreten yapı bileşenine dönüşmektedir. Düşey yapı kabuğunun, gerek mimari biçimin oluşturulmasında, gerekse iç-dış ortam arasında denetim yapılmasında önemli bir rolü vardır. Bu nedenle, gereksinilen konfor koşullarının sağlanabilmesi için kabuğun tasarımı, masif kısımların oranları ile yapı kabuğunun detaylandırılması özel bir önem taşır. Özellikle PV entegre edilmiş konstrüksiyonda bu özellikler daha fazla öneme sahip olmaktadır. Çünkü entegre sistemlerde sözkonusu özelliklerin sağlanmasının yanı sıra, sistem opsiyonlarını ve kabuk tasarımını etkileyen PV'lerin kendi özelliklerinin de dikkate alınması söz konusudur.- Örneğin, optimum bir sonuç için, PV sistemin yalnızca uygun eğimde değil, aynı zamanda en iyi güneş açısını da sağlayacak biçimde monte edilmesi gereklidir. Sonuç, olarak, yapı kabuğunun olası biçimleri doğrudan doğruya PV panellerin etkin kullanımına bağlı olarak ortaya çıkar. Bu bağlamda, bu araştırmada PV panelli düşey yapı kabuğunun biçimlenme olanakları, bir bina cephesinin temel tasarım ilkeleri doğrultusunda tanıtılacaktır.

Using priciples of photovoltaic panels on vertical building envelope

From both energy, and ecology policy points of view, buildings need to promote a trend toward the development of energy conservation, cost-effective way to reduceenergy use, environmentally safe facilities, and sustainable architecture. In the last twenty years, great improvements have been made in the energy efficiency of buildings. However, the gains, in passive and active approaches, already made are seemed to be just a start to the process. Photovoltaics integrated into buildings can help to take building (technology to the next step, by generating electricity while enhancing efficiency. 'Recent trends in PV and building technologies imply that PV's make sense as a building product. The integration of PV's into buildings could effectively decrease the cost of the PV system while transforming building envelope from energy consumers to energy producers. The vertical building envelope has an important role in creation of the architectural form and the ambiance in consistency with the function and external environment of the building. Therefore, to achieve the required comfort conditions, the design, proportioning of solids, and detailing of the building envelope is essential. Especially in PV integrated construction the issue gains more importance, because PVs have their own properties that affect the system options and design of the envelope. For example, for optimum output, a PV system not only must be mounted at the proper tilt, it also must face the best altitude angle of the sun. Naturally, the designs of optional forms of envelope are directly related to the effective using of PV panels. Within this context, the article will introduce you to the basic design principles of building envelope with PV panels. The aim is to give a brief summary of PV systems, options and opportunities of effective using in vertical building envelope, and constructional necessities.

___

  • 1. Enerjinin etkin kullanımı konusunda ağ bağlantılı paylaşımlı sitelerinden bazıları: www.eren.doe.gov; www.caddett_ee.org: www.energy-efficiency.gov.uk; www.eeca.govt.nz; www.ornl.gov; www.oee.nrcan.qc.ca; www.energy.gov/efficiency; www.energy.ca.gov; www.iea.org
  • 2. Boyle, G., Renewable Energy: Power for a Sustainable Future, Oxford University Press, Oxford, 1996.
  • 3. Environmental Design, Ed: Thomas R., E&FN Spon, London, 1999.
  • 4. Tuluca, A., Energy-Efficient Design and Construction for Commercial Buildings, McGraw-Hill, NewYork, 1997.
  • 5. Wrixon, G. T., Rooney, P.W., Renewable Energy-2000, Springer-Verlag, Berlin, 1999.
  • 6. Hui H. F., Fong T., Lai K. W., Passive Solar Design in Architecture, www.hku.hk/bse/e-conf/k/solar_k.htm
  • 7. “Passive Solar Guidelines”, www.greenbuilder.com/sourcebook/PassSolGuide1- 2.html
  • 8. Energy in Architecture: The European Passive Solar Handbook, Ed: Goulding J. R., Lewis J. O., Steemers T. C., Batsford for the Commission of the European Communities, London, 1992.
  • 9. Crosbie, M. J. Steven Winter Associates, Inc., The Passive Solar Design and Construction Handbook, John Wiley &Sons, New York, 1997.
  • 10. Intelligent Buildings in South East Asia, Ed: Harrison A., Loe E., Read J., E&FN Spon, London, 1998.
  • 11. Solar energy in Architecture and Urban Planning, Ed: Herzog T., Prestel, Munich, 1996.
  • 12. Solar Electricity, , Ed: Markvart T., John Wiley&Sons Ltd., West Sussex, 2000.
  • 13. “The History Of PV”, www.pvpower.com/pvhistory.html
  • 14. Photovoltaics in Buildings - A Design Handbook for Architects and Engineers, Ed: Sick, F., Erge, T., The Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany, 1996.
  • 15. “Green Grid Power”, www.bpsolarex.com/ContentPage.cfm?page=77
  • 16. Shugar D. S., Dinwoodie T. L., “Photovoltaic roof tiles for commercial buildings”, Fuel and Energy, Volume 37, Issue 6, 440-444, November 1996.
  • 17. Watt, M., Kaye, J., Travers, D., MacGill, L., March, “Opportunities for the Use of Building Integrated Photovoltaics”, Photovoltaics Special Research Centre University of NSW, 1999, www.pv.unsw.edu.au/miscpapers/BIPV/Chap2.pdf
  • 18. Eiffert, P., Kiss, G. J. Building-Integrated Photovoltaic Designs for Commercial and Institutional Structures: A Sourcebook for Architects, www.nrel.gov/docs/fy00osti/25272.pdf
  • 19. Oliver, M., Jackson, T., “The market for solar photovoltaics”, Energy Policy, 27, 371-385, 1999.
  • 20. A. Hunter Fanney and Brian P. Dougherty, “Building Integrated Photovoltaic Test Facility”, The Journal of Solar Energy Engineering, Vol. 123, No.2, 194-199, August 2001.
  • 21. “Photovoltaic Systems: Commercial Status”, Sustainable Building Sourcebook, www.greenbuilder.com/sourcebook/photovoltaic.html “HKU Photovoltaic Study: Progress in PV-What's new?” www1.arch.hku.hk/research/photovoltaic/ page2.html “Cost/Capacity Analysis for PVMaT Participants” www.nrel.gov/pvmat/pvmat_frame.shtml?pvmatsolicit.html
  • 22. “Development of Photovoltaics”, www.nrel.gov/ncpv/documents/ seb/sebexplain.html
  • 23. Wenger, H., Hoff, t., Photovoltaic Economics and Markets, 1996. www.energy.ca.gov/reports/1996-09-01_500-94-030_SMUD.PDF
  • 24. “About Photovoltaics”, www.eren.doe.gov/pv/pvmenu.cgi?site=pv&idx=1&body= aboutpv.html
  • 25. Güneş Pilleri, Elektrik İşleri Etüd İdaresi Genel Müdürlüğü Yayını, Ankara, 1992.
  • 26. Strong, S., Scheller, W., (1993), The Solar Electric House, Sustainability Press, Massachusetts.
  • 27. “Photovoltaics: Basic Design Principles and Components”, Consumer Energy Information: EREC Fact Sheets, www.eren.doe.gov/erec/factsheets/ pvbasics.html
  • 28. www.eren.doe.gov/RE/solar_photovoltaics.html
  • 29. Sarıtaş, M., “Review Paper on Solar Cell Technology”, Proceedings of ECA Elektronics Technology Workshop TUBITAK, Gebze, (February 1988)
  • 30. Zweibel K., “Thin Films: Past, Present, Future”, Progress in Photovoltaics, Vol.. 3, No. 5. 92-99, Sept/Oct 1997.
  • 31. Sarıtaş, M. ve Gökpınar, H., “Efficiency Optimization of Silicon Solar Cells” 3rd National Con. On Electrical Engineering, ITÜ, İstanbul, 46-49, September 1989.
  • 32. Green M. A. “Third generation photovoltaics: solar cells for 2020 and beyond”, Solar Energy Materials and Solar Cells, Volume 71, Issue 3, 15, 375-385, February 2002.
  • 33. Arvind, S. J., Meier, E., vd., “Microcrystalline silicon and ‘micromorph’ tandem solar cells”, Thin Solid Films, Volumes 403-404,179-187, February 2002.
  • 34. Slaoui, A., Bourdais, S., vd. “Polycrystalline silicon solar cells on mullite substrates”, Solar Energy Materials and Solar Cells, Volume 71, Issue 2, 1, 245-252, February 2002.
  • 35. Green, M. A., “Solar Cell Efficiency Tables”, Key Centre for Photovoltaic Engineering UNSW, www.pv.unsw.edu.au/eff/
  • 36. Kwok K.C., Dixon, S., Pearsall, N. “Development of a design tool for building integrated photovoltaics”, 5th International Conference on Information Visualisation , Proceedıngs, 97-102, July 25-27, 2001.
  • 37. Lloret, A. vd., “Lessons Learned in the Electrical System Design, Installation and Operation of the Mataró Public Library”, Proceedings of 14th European PV Solar Energy Conference, Barcelona, 1659-1664, 30 June-4 July 1997.
  • 38. Bücher, K., Batzner D., “Photovoltaic Modules in Buildings: Performance and Safety”, Renewable Energy, 15, 545-551, 1998.
  • 39. Baziliana, M. D., vd., “Thermographic analysis of a building integrated photovoltaic system“, Renewable Energy, 26, 449–461, 2002.
  • 40. “Sunspace Basics”, National Renewable Energy Laboratory, Colorado, November 1994.
  • 41. Kiss, G., Kinkead, J., Building Integrated Photovoltaics, (NREL) National Renewable Energy Laboratory, Colorado 1993.
  • 42. Yang, H., Burnett, J., Ji, J., “Simple approach to cooling load component calculation through PV walls”, Energy and Buildings, Volume 31, Issue 3, 285-290, April 2000.
  • 43. Alaçakır, B., “Didim’de Kurulan Şebeke Bağlantılı Güneş Pili Sisteminin Tanıtılması ve Performansının İncelenmesi”, Güneş Günü Sempozyumu, Kayseri, 25-27 Haziran 1999.
  • 44. Lloret, A., A technical description of the Pompeu Fabra: Library of Mataró, Joule II CT92-046 of the European Commission General Direction XII, Barcelona, 1997.
  • 45. “Design Brief: Building Integrated Photovoltaics,” www.energydesignresources. com/publications/design_briefs/pdfs/VOL_02/DBBldgIntegPhotovoltaics.pdf
  • 46. Kiss, G., Kinkead, J., Raman, M., Building Integrated Photovoltaics: A Case Study, (NREL) National Renewable Energy Laboratory, UC Category:1600, Colorado, 1995.
  • 47. Brooks, B. Smith, J., “Integrating PV into commercial buildings aesthetically and cost effectively: A PV awning case study”, The 1996 American Solar Energy Society annual conference: Proceedings. Ed: Campbell-Howe, R., Wilkins-Crowder, B., American Solar Energy Society, Boulder, 45-50, 1996.
  • 48. Tan, E. Şahin, A. D “Türkiye Güneş Enerjisi Potansiyeli“, III. Ulusal Temiz Enerji Sempozyumu Bildiri Kitabı, Ed: Z. Şen, F. Karaosmanoğlu, Şahin, A. Tan, E., İTÜ İnşaat Fakültesi Matbaası, İstanbul,2000.
  • 49. “Elektrik Tüketimlerinin Sektörel Dağılımları”, Devlet İstatistik Enstitüsü 1998 Verileri; ftp://ftp.dpt.gov.tr/pub/ekutup99/il99/il99-71.xls
  • 50. Energy Policies of IEA Countries: Turkey 2001 Review, International Energy Agency, 2001.
  • 51. Ulusal temiz Enerji Sempozyumu 15-17 Kasım 2000, Bildiri Kitabı, Ed: Z. Şen, F. Karaosmanoğlu, Şahin, A. Tan, E., İTÜ İnşaat Fakültesi Matbaası, İstanbul.
  • 52. IEA Pover Systems Programme, Country Summarıes, www.iea-pvps.org/ ve www.oja-services.nl/iea-pvps/nsr/home.htm sitelerinden üye ülkelerin PV programlarına ilişkin bilgiyi almak mümkündür.
  • 53. www.aresenerji.com/app/app_catalca.htm www.pvportal.com/int/country.php?CountID=TR www.alternatifenerji.com/gunesp.htm www.orjinsolar.com
  • 54. Developing a New Generation of Sustainable Energy Technologies Longterm R&D Needs, A Report on a Workshop of the Renewable Energy Working Party (REWP) of the International Energy Agency (IEA), Paris. 2000.
  • 55. Eiffert, P., “Economic assessement of building Integrated Photovoltaics”, The 2nd World Solar Electric Buildings Conference, Sydney 8th-10th March 2000,www.task7.org/Public/IEA_Sydney_conference_papers/Paper_C_Patrina_ Eiffert.pdf
  • 56. Roecker, C.,”New Mountıng Systems For Pv On Buıldıngs”, The 2nd World Solar Electric Buildings Conference, Sydney, 8th-10th March 2000. ww.task7.org/Public/IEA_Sydney_conference_papers/Paper_W_Christian_Roe cher.pdf