BDT/BDİ uygulamaları için bilgisayar destekli parça tanıma yaklaşımının geliştirilmesi

3 boyutlu BDT (Bilgisayar Destekli Tasarım) modellerinden imalat bilgilerinin otomatik çıkarımı BDT/BDİ (Bilgisayar Destekli İmalat)’ın entegrasyonu için önemli bir çalışma alanıdır. Bu makalede, BDT/BDİ entegrasyonunu desteklemek için uzman sistem tabanlı bir parça tanıma yaklaşımı geliştirilmiştir. Sisteme girdi olarak 3 boyutlu BDT modellerinin STEP (Standard for the Exchange of Product Model Data) dosyası kullanılmıştır. Her bir yüzeye ait komşu yüzeyler ve nitelikler STEP dosyasından çıkarılarak matematiksel bir modelde (YKİM- Yüzey Komşuluk İlişki Matrisi) temsil edilmiştir. Aynı zamanda, Windows tabanlı bir yazım editörü kullanılarak bilgi tabanı oluşturulmuş ve bilgi tabanı için bir kural yazma formatı geliştirilmiştir. YKİM ve bilgi tabanında temsil edilen geometrik ve topolojik bilgi karşılaştırılarak parçalar tanınmıştır. Parça tanıma algoritması işlem planlama, grup teknolojisi gibi birçok BDT/BDİ uygulaması için uygulanabilirdir. Algoritmanın verimliliği ve kapasitesini göstermek için yaklaşım karmaşık parçalara sahip olan otomobil motor parçalarına uygulanmıştır.

Developing of a computer aided part recognition approach for CAD/CAM applications

For CAD (Computer Aided Design)/CAM (Computer Aided Manufacturing) integration, automatic extraction of manufacturing information from 3D CAD models is an important work field. In this paper, an expert system based part recognition approach has been developed to support the integration between CAD and CAM. STEP files of 3D CAD models are used as input to the system. They are represented in a mathematical model (SARM- Surface Adjacency Relation Matrix) by extracting neighbouring surfaces and attributes belonging to each surface from the STEP file. A knowledge base has been also constructed by using a Windows based text editor and a rule writing format has been developed for the knowledge base. The parts are recognized by comparing geometric and topological information represented in both SARM and the knowledge base. Part recognition algorithm is applicable for many CAD/CAM applications such as process planning and group technology. The algorithm has been applied to an automobile engine which has complex parts to demonstrate its efficiency and capability.

___

  • 1. Gülesin, M., Jones, R.M., “Face oriented neighbouring graph (FONG): a part representing scheme for process planning”, Computer Integrated Manufacturing Systems, Cilt 7, No 3, 213-218, 1994.
  • 2. Dereli, T., Filiz, İ.H., “A note on the use of STEP for interfacing design to process planning”, Computer Aided Design, Cilt 34, 1075-1085, 2002.
  • 3. Bhandarkar, M.P., Nagi, R., “STEP-based feature extraction from STEP geometry for agile manufacturing”, Computers in Industry, Cilt 41, 3-24, 2000.
  • 4. Han, J.H., Kang, M., Choi, H., “STEP-based feature recognition for manufacturing cost optimization”, Computer Aided Design, Cilt 33, pp. 671-686, 2001.
  • 5. Qamhiyah, A.Z., Venter, R.D., Benhabib, B., “Geometric reasoning for the extraction of form features”, Computer Aided Design, Cilt 28, No 1, 887-903, 1996.
  • 6. Gao, S., Shah, J.J., “Automatic recognition of interacting machining features based on minimal condition subgraph”, Computer Aided Design, Cilt 30, No 9, 727-739 ,1998.
  • 7. Falcidieno, B., Giannini, F., “Automatic recognition and representation of shape based features in a geometric modeling system”, Computer Vision, Graphics and Image Processing, Cilt 48, 93-123, 1989.
  • 8. Gavankar, P., Henderson, M.R., “Graph-based extraction of protrusions and depressions from boundary representations”, Computer Aided Design, Cilt 22, No 7, 442-450, 1990.
  • 9. Chuang, S.H., Henderson, M.R., “Three- dimensional shape pattern recognition using vertex classification and vertex-edge graphs”, Computer Aided Design, Cilt 22, No 6, 377- 387, 1990. 10.Huang, Z., Yip-Hoi, D., “High-level feature recognition using feature relationship graphs”, Computer Aided Design, Cilt 34, 561-582, 2002.
  • 11. Pal, P., Kumar, A., “A hybrid approach for identification of 3D features from CAD database for manufacturing support”, International Journal of Machine Tools & Manufacture, Cilt 42, 221-228, 2002.
  • 12. Pal, P., Tigga, A.M., Kumar, A., “A strategy for machining interacting features using spatial reasoning”, International Journal of Machine Tools & Manufacture, Cilt 45, 269-278, 2005.
  • 13. Rezayat, M., “Midsurface abstraction from 3D solid models: general theory and applications”, Computer Aided Design, Cilt 26, No 11, 905- 915, 1996.
  • 14. Lockett, H.L., Guenov, M.D., “Graph-based feature recognition for injection moulding based on a mid-surface approach”, Computer-Aided Design, Cilt 37, 251-262, 2005.
  • 15. Mehalawi, M., Miller, R.A., “A database system of mechanical components based on geometric and topological similarity. Part I: re+presentation”, Computer Aided Design, Cilt 35, 83-94, 2003.
  • 16. Mehalawi, M., Miller, R.A., “A database system of mechanical components based on geometric and topological similarity. Part II: indexing, retrieval, matching and similarity assessment”, Computer Aided Design, Cilt 35, 95-105, 2003.
  • 17. Candadai, A., Herrman, J.W., Minis, I., “Applications of group technology in distributed manufacturing”, Journal of Intelligent Manufacturing, Cilt 7, 271-291, 1996.
  • 18. Lee, J.Y., Kim, K., “Generating alternative interpretations of machining features”, International Journal of Advanced Manufacturing Technology, Cilt 15, 38-48, 1999.
  • 19. Lee, J.Y., Kim, K., “A feature-based approach to extracting machining features”, Computer Aided Design, Cilt 30, No 13, 1019-1035, 1998.
  • 20. Prabhu, B.S., Pande, S.S., “Intelligent interpretation of CADD drawings”, Computers & Graphics, Cilt 23, 25-44, 1999.
  • 21. Prabhu, B.S., Biswas, S., Pande, S.S., “Intelligent system for extraction of product data from CADD models”, Computers in Industry, Cilt 44, 79-95, 2001.