AISI 316L ÇELİĞİNİN İŞLENMESİNDE TAKIM RADYÜSÜ VE KESME PARAMETRELERİNİN TAGUCHİ YÖNTEMİYLE OPTİMİZASYONU

Yüzey kalitesi ve ölçü tamlığı, temas halinde çalışan makine parçalarının dayanımını ve performansını önemli miktarda etkilemektedir. Bununla birlikte, talaşlı imalatta kullanılan kesici takım geometrisi ve kesme parametreleri; kesme kuvveti, yüzey pürüzlülüğü ve işleme verimliliğini etkileyen en önemli faktörlerdir. Bu çalışmada, AISI 316L östenitik paslanmaz çeliğinin işlenmesinde oluşan Fc ve Ra için kesici takım radyüsü ve kesme parametrelerinin (değişkenler) optimizasyonu yapılmıştır. Bu amaçla, Taguchinin L9 dikey dizini kullanılarak işlenebilirlik deneyleri gerçekleştirilmiştir. İşleme deneyleri sırasında ölçülen Fc ve Ra değerleri üzerinde değişkenlerin etkilerini ve önem seviyelerini belirlemek için varyans analizi (ANOVA) uygulanmıştır. S/N oranları kullanılarak tespit edilen değişkenlerin optimum değerleri, Fc ve Ra için farklı seviyelerde bulunmuştur. ANOVA sonuçlarına göre, kesme kuvveti ve yüzey pürüzlülüğünü etkileyen en önemli değişken ilerleme miktarı olarak belirlenmiştir.

OPTIMIZATION WITH TAGUCHI METHOD OF CUTTING PARAMETERS AND TOOL NOSE RADIUS IN MACHINING OF AISI 316L STEEL

Surface quality and dimensional precision significantly affect to strength and performance of working machine parts that are contacted one another. Additionally, cutting tool geometry and cutting parameters are the most important factor affecting to cutting force, surface roughness and productivity in machining. In this paper, optimization of cutting parameters and tool nose radius (variables) was performed for which Fc and Ra are occurred in machining of AISI 316L austenitic stainless steel. For this purpose, the machinability experiments were carried out using Taguchi s L9 orthogonal array. An analysis of variance (ANOVA) was employed to determine the level of contribution and effects of variables on Fc and Ra values measured during the machining experiments. Optimal values of variables which were obtained using the S/N ratios were found at different levels for Fc and Ra. According to the ANOVA results, the most significant variable affecting to cutting force and surface roughness values was determined as feed rate.

___

  • 1. Kosa,T., Ronald, P., “Machining of stainless steels”, Handbook: Machining, Vol. 16, 9th Edition, Editor: J. R. Davis, Metals Park, Ohio, 1989.
  • 2. M’Saoubi, R., Outeiro, J.C., Changeux, B., Lebrun, J.L., Dias, A.M., “Residual stress analysis in orthogonal machining of standard and resulfurized AISI 316L steels”, Journal of Materials Processing Technology, 96, 225-233, 1999.
  • 3. Darwin, J.D., Lal, D.M., Nagarajan, G., “Optimization of cryogenic treatment to maximize the wear resistance of 18%Cr martensitic stainless steel”, Journal of Materials Processing Technology, 195, 241-247, 2008.
  • 4. Outeiro, J.C., Umbrello, D., M’Saoubi, R., “Experimental and numerical modelling of the residual stresses induced in orthogonal cutting of AISI 316L steel”, International Journal of Machine Tools and Manufacture, 46, 1786– 1794, 2006.
  • 5. Chang, C.S., Tsai, G.C., “A force model of turning stainless steel with worn tools having nose radius”, Journal of Materials Processing Technology, 142, 112–130, 2003.
  • 6. Maranhao, C., Davim, J.P., “Finite element modelling of machining of AISI 316 steel: Numerical simulation and experimental validation”, Simulation Modelling Practice and Theory, 18, 139–156, 2010.
  • 7. Nasr M.N.A., Ng, E.G., Elbestawia, M.A., Modelling the effects of tool-edge radius on residual stresses when orthogonal cutting AISI 316L, International Journal of Machine Tools and Manufacture, 47, 401–411, 2007.
  • 8. Kamely, M.A., Noordin, M.Y., “The impact of cutting tool materials on cutting force”, World Academy of Science Engineering and Technology, 75, 904-907, 2011.
  • 9. Korkut, I., Boy, M., Karacan, I., Seker, U., “Investigation of Chip-back temperature during machining depending on cutting parameters”, Materials and Design, 28, 2329–2335, 2007.
  • 10. Dogra, M., Sharma, V.S., Dureja, J., “Effect of tool geometry variation on finish turning–A Review”, Journal of Engineering Science and Technology Review, 4 (1), 1-13, 2011.
  • 11. Ciftci, İ., “Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools”, Tribology International, 39, 565–569, 2006.
  • 12. Tekaslan, Ö., Gerger, N., Günay, M., Şeker, U., “AISI 304 östenitik paslanmaz çeliklerin titanyum karbür kaplamalı kesici takım ile tornalama işleminde kesme kuvvetlerinin incelenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 13 (2), 129-286, 2007.
  • 13. Özer, A., Bahçeci, E., “AISI 410 martensitik paslanmaz çeliklerin kesici takım ve kaplamasına bağlı işlenebilirliği”, Journal of The Faculty of Engineering and Architecture of Gazi University, 24 (4), 693-698, 2009.
  • 14. Tekiner, Z., Yeşilyurt, S., Investigation of the cutting parameters depending on process sound during turning of AISI 304 austenitic stainless steel, Materials and Design, 25, 507–513, 2004.
  • 15. Li, S., Liu, Y., Zhu, R., Li, H., Ding, W., “Study on turning parameter optimization of austenitic stainless steel”, Applied Mechanics and Materials, 34-35, 1829-1833, 2010.
  • 16. Selvaraj, D.P., Chandramohan, P., “Optimization of surface roughness of AISI 304 austenitic stainless steel in dry turning operation using Taguchi design method”, Journal of Engineering Science and Technology, 5 (3), 293-301, 2010.
  • 17. Taguchi, G., Chowdhury, S., Wu, Y., Taguchi's Quality Engineering Handbook, John Wiley & Sons, Inc., New Jersey, USA, 2005.
  • 18. Zhang, J.Z., Chen, J.C., Kirby, E.D., “Surface roughness optimization in an end-milling operation using the Taguchi design method, Journal of Materials Processing Technology, 184, 233–239, 2007.
  • 19. Gologlu, C., Sakarya, N., “The effects of cutter path strategies on surface roughness of pocket milling of 1.2738 steel based on Taguchi method”, Journal of Materials Processing Technology, 206, 7–15, 2008.
  • 20. Günay, M., Yücel, E., “Application of Taguchi method for determining optimum surface roughness in turning of high-alloy white cast iron, Measurement, 46 (2), 913–919, 2013.
  • 21. ISO 4287:1997, Geometrical Product Specifications (GPS)-Surface texture: profile method-terms, definitions and surface texture parameters, international organisation for standardisation, Geneva, 1997.
  • 22. Chen, W., “Cutting forces and surface finish when machining medium hardness steel using CBN tools”, International Journal of Machine Tools and Manufacture, 40, 455–466, 2000.
  • 23. Ross, P.J., Taguchi Techniques for Quality Engineering, McGraw Hill, New York, 1996.
  • 24. Abdullah, M.F., Sulong, A.B., Chua, I. H., Haron, C.H.C., Ghani, J. A., Effects of insert nose radius and processing cutting parameter on the surface roughness of AISI 316 stainless steel, Key Engineering Materials, 447-448, 51-54, 2010.
  • 25. Nath, C., Rahman, M., Neo, K.S., “A study on the effect of tool nose radius in ultrasonic elliptical vibration cutting of tungsten carbide”, Journal of Materials Processing Technology, 209, 5830– 5836, 2009.