Adana ve çevre illerde gözlenen yıllık maksimum yağışların bölgesel frekans analizi

Hidrolik yapıların tasarlanması ve projelendirilmesinde yapının ekonomik ömrü boyunca yapıya gelecek maksimum taşkınların büyüklüklerinin ve meydana gelme frekanslarının güvenilir bir biçimde tahmin edilmesi büyük önem arz etmektedir. İstatistiksel bir metot olan bölgesel frekans analizi bu amaçla kullanılan yöntemlerden biridir. Bölgesel frekans analizi, sadece su yapılarının tasarımı sırasında etkili tahmin yapılmasında değil, aynı zamanda hidrolojik bilgi olmayan veya kısa süreli veriye sahip bölgelerde de tasarım parametrelerinin belirlenmesinde kullanılmaktadır. Bu çalışmada dağılım parametrelerini tahmin etmek için L-momentler tekniği kullanılarak Meteoroloji Genel Müdürlüğü (MGM) ve Devlet Su İşleri (DSİ) tarafından işletilen, Adana ve çevresindeki illerde bulunan, 53 adet yağış gözlem istasyonundan elde edilen ve kayıt süreleri 18 yıldan uzun olan istasyonların yıllık maksimum yağış değerlerine bölgesel frekans analizi uygulanmıştır. Bölgeselleştirme tekniği olarak, L-momentlere dayalı gösterge-taşkın metodu (Index Flood Method) kullanılmıştır. Elde edilen homojen bölgelere Genelleştirilmiş Normal, Genelleştirilmiş Ekstrem Değer, Genelleştirilmiş Lojistik, Genelleştirilmiş Pareto, Pearson Tip 3 dağılımları uygulanarak tekerrür periyoduna karşılık proje yağış değerleri elde edilmiştir. Noktalama pozisyonu formülü olarak literatürde yaygın olarak kullanılan Medyan, Hosking, Gringorten, Hazen ve Cunnane formülleri kullanılmıştır. Sonuçları karşılaştırmada hata ölçümü için 3 parametre kullanılmıştır. Bu üç parametre sırasıyla normalleştirilmiş mutlak hata (NAE), ortalama mutlak hata (MAE) ve ortalama karesel hatadır (RMSE). Hata ölçüm değerleri, Genelleştirilmiş Lojistik (GLO) dağılımının en yaklaşık sonucu verdiğini göstermiştir.

Regional frequency analysis of annual peak rainfall of adana and the vicinity

The design and the project of hydraulic structures, during economic life of the structure, a reliable estimate of the magnitude and the frequency of the maximum flood will occur is of great importance. Regional frequency analysis, being a statistical method, is used for this purpose. Regional flood frequency analysis provides a solution not only in estimating the design event magnitudes but also at sites having too short records and at sites where no hydrologic information is available. In this study, regional flood frequency analysis using L-moments method for estimating the probability distribution parameters were applied to minimum 18 years of recorded series of annual maximum precipitation peaks of 53 precipitation stations which operated by Turkish State of Meteorological Service and Public Waterworks Administration. The index flood method based on L-moments method was used for identification of homogenous region. Generalized Normal, Generalized Extreme Value, Generalized Logistic, Generalized Pareto, Pearson Type 3 and Wakeby distributions were applied to homogenous regions to obtain the reoccurence values. Median, Hosking, Cunnane, Gringorten, Hazen formulas frequently used in literature were used as plotting position formula. Results of the 3 parameters were used for the comparison measurement error. These three parameters are respectively normalized absolute error (NAE), mean absolute error (MAE) and mean square error (RMSE). According to the measurement error value, Generalized Logistic distribution is found to give most accurate results.

___

  • 1. Albostan A., Önöz B., Wavelet Application Approach on the Chaotic Analysis of Daily River Discharge, Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (1), 39-48, 2015.
  • 2. DSİ., Türkiye Maksimum Yağışları Frekans Atlası, Noktasal Yağışları Frekans Atlası, Cilt I, 1990.
  • 3. Anlı A.S., Yürekli K., Öztürk F., Tokat İlinde Saptanan Kurak Sürelerin L Moment Tekniği İle Bölgesel Frekans Analizi, TMMOB İklim Değişimi Sempozyumu, 82-95, 2008.
  • 4. Durrans S., Kirby J.T., Regionalization of Extreme Precipitation Estimates for the Alabama Rainfall Atlas, Journal of Hydrology, 101-107, 2004.
  • 5. Hosking J.R.M., Wallis J.R., Regional Frequency Analysis An Approach Based on L-Moments, Cambridge University Press, UK, 1997.
  • 6. Hosking J.R.M., L-Moments:Analysis ve Estimation of Distributions Using Lineer Combinations of Order Statistics, J. Royal Statistical Society, 52 (2), 105-124, 1990.
  • 7. Hosking J.R.M., Wallıs J.R., Wood E.F., Estimation of The Generalized Extreme Value Distribution By The Method of Probability Weighted Moments, Technometrics, 27 (3), 251-261, 1985.
  • 8. Lettenmaier D.P., Potter K.W., Testing Flood Frequency Estimation Methods Using a Regional Flood Generation Model, Water Resources Research, 1903-1914, 1985.
  • 9. Wallis J.R., Wood E.F., Relative Accuracy of Log Pearson-3 Procedures, Journal of Hydrology, Div., ASCE, 111 (7), 1043-1056, 1985.
  • 10. Lettenmaier D.P., Wallis J.R., Wood E.F., Effect of Regional Heterogeneity on Flood Frequency Estimation, Water Resources Research, 313-323, 1987.
  • 11. Hosking J.R.M., Wallis J.R., The Effect of Intersite Dependence on Regional Flood Frequency Analysis, Water Resources Research, 588-600, 1988.
  • 12. Potter K.W., Lettenmaier D.P., A Comparison of Regional Flood Frequency Estimation Methods Using Bootstrap Statistics, Water Resources Research, 26 (3), 415-424, 1990.
  • 13. Rosbjerg D., Madsen H., Rasmussen P.F., Prediction in Partial Duration Series with Generalized Pareto Distributed Exceedances, Water Resources Research, 28 (11), 3001-3010, 1992.
  • 14. Vogel R.M., Fennessey N.M., L Moment Diagrams Should Replace Product Moment Diagrams, Water Resour. Res., 29 (6), 1745-1752, 1993.
  • 15. Naghavi B., Yu F.X., Regional Frequency Analysis of Extreme Precipitation in Louisiana, Journal of Hydraulic Engineering, 121 (11), 819-827, 1995.
  • 16. Şorman Ü., Bölgesel Frekans Analizindeki Son Gelişmeler ve Batı Karadenizde Bir Uygulama, İMO Teknik Dergi, 15 (2), 3155-3169, 2004.
  • 17. Seçkin N., L-Momentlere Dayalı Gösterge-Sel Metodu İle Bölgesel Taşkın Frekans Analizi, Doktora Tezi, Çukurova Ü., Fen Bilimleri Enstitüsü, Adana, 2009.
  • 18. Seckin N., Yurtal R., Haktanir H., Topaloglu F., Regional Flood Frequency Analysis of Ceyhan River Basin in Turkey Using L-moments Method, Fresenius Environnemtal Bulletin 19, 11a, 2010.
  • 19. Seckin N., Haktanir T., Yurtal R., Flood Frequency Analysis of Turkey Using L-Moments Method, Hydrological Processes, 3499, 2011.
  • 20. Saf B., Regional Flood Frequency Analysis Using LMoments for the West Mediterranean Region of Turkey, Water Resources Management, 23 (3), 531- 551, 2007.
  • 21. Dodangeh S., Sattari M. T. ve Seçkin, N., Minimum Akımların L Momentler Yöntemi ile Bölgesel Frekans Analizi, Journal of Agricultural Sciences. Ankara, 43- 58, 2011.
  • 22. Lee S.H., Maeng S.J., Frequency Analysis of Extreme Rainfall Using L-moments, Irrigation and Drainage, 219-230, 2003.
  • 23. Fowler H.J., Kilsbyc G., A Regional Frequency Analysis of United Kingdom Extreme Rainfall From 1961 To 2000, International Journal Of Climatology, 1313-1334, 2003.
  • 24. Anlı A.S., Apaydın H., Öztürk F., Trabzon İlinde Gözlenen Yıllık Maksimum Yağışların Bölgesel Frekans Analizi, Ankara Üniversitesi Ziraat Fakültesi Tarım Bilimleri Dergisi, 15 (3), 240-248, 2009.
  • 25. Norbiato D., Borga M., Sangati M., Zanon F., Regional Frequency Analysis of Extreme Precipitation in the Eastern Italian Alps and The August 29, 2003 Flash Flood, Journal of Hydrology, 149-166, 2007.
  • 26. Yürekli K., Köse Ö., Hınıs M.A., Yüzey Drenaja Neden Olan Yıllık Maksimum Yağmurların Bölgesel Frekans Analizi, Tarım Bilimleri Araştırma Dergisi, 4 (2), 27-30, 2011.
  • 27. Nam W.S., Shin H.J., Heo J.H., Kim K.D., Regional Rainfall Frequency Analysis Based On Generalized Logistic Model, Proceedings of the 2005 World Water and Environmental Resources Congress, Anchorage, Alaska; Sponsored by Environmental and Water Resources Institute (EWRI) of the American Society of Civil Engineers. May 15-19. 2005
  • 28. Parida B.P., Kachroo R.K., Shrestha D.B., Regional flood frequency analysis of Mahi-Sabarmati basin (subzone 3-a) using index flood procedure with Lmoments, Water Resources Management, 1-12, 1998.
  • 29. Okur A., Application of regional flood frequency analysis through L-moments, Middle East Technical University, Ms. Thesis, Ankara, 1999.
  • 30. Kjeldsen T.R., Smithers J.C., Schulze R.E. Regional flood frequency analysis in the KwaZulu-Natal province, South Africa, using the index-flood method, Journal of Hydrology, 194-211, 2002.
  • 31. Sveinsson O.G.B., Salas J.D., Boes D.C., Regional frequency analysis of extreme precipitation in Northeastern Colorado and Fort Collins flood of 1997, ASCE Jour. Hydrologic Engineering, 49-63, 2002.
  • 32. Ben-Zvi A. and Azmon B., Joint use of L-moment diagram and goodness of fit test: a case study of diverse series, Journal of Hydrology, 245-59, 1997.
  • 33. Lee S.H., Maeng S.J., Frequency analysis of extreme rainfall using Lmoments. Irrigation and Drainage, 219- 30, 2003.
  • 34. Jaiswal R.K., Goel N.K., Singh P., Thomas T., Lmoment based flood frequency modelling, Journal of the Institution of Engineers, 6-10, 2003.
  • 35. Kumar R., Chatterjee C., Kumar S., Lohani A.K., Singh R.D., Development of regional flood frequency relationships using L-moments for Middle Ganga plains subzone 1(f) of India, Water Resources Management, 243-57, 2003.
  • 36. Yurekli K., Regional Frequency Analysis of Maximum Daily Rainfalls Based on L-moment Approach, GOU. Ziraat Fakültesi Dergisi, 22 (1), 37- 44, 2005
  • 37. Anli A.S., Apaydin H., Ozturk F., Advanced methods applied in regional frequency analysis, 3rd International Conference on Water Resources in Mediterranean Basin, 1-3 November, Tripoli, Lebanon, 2006.
  • 38. Anli A.S., Apaydin H., Ozturk F., Regional flood frequency estimation for the Göksu River Basin through L-moments, International River Basin Management Conference, State Hydraulic Works, Gloria Golf Resort Hotel, Belek, Antalya, 22-24 March, 2007.
  • 39. Kumar D., Development of regional flood frequency relationships using Lmoments for lower Narmada and Tapi subzone 3(b), IE(I) Journal, 26-31. 2007.
  • 40. Yurekli K., Modarres R., Regionalization of Maximum Daily Rainfall Data over Tokat Province, Turkey, International Journal of Natural and Engineering Sciences, 1 (2), 1-7. 2007.
  • 41. Seckin N., Yurtal R., Haktanır T., Topaloglu F., Regional Flood Frequency Analysis Of Ceyhan River Basın In Turkey Using L-Moments Method, Fresenius Environmental Bulletin, 19 (11a), 2616-2624, 2010.
  • 42. Seckin N., Yurtal R., Haktanır T., Dogan A., Comparison Of Probability Weighted Moments And Maximum Likelihood Methods Used In Flood Frequency Analysis For Ceyhan River Basin, Arabian Journal For Science And Engineering, 35 (1b), 49-69, 2010.
  • 43. Seckin N., Haktanır T., Yurtal R., Flood Frequency Analysis of Turkey Using L-moments Method, Hydrological Processes, 25 (22), 3499-3505, 2011.
  • 44. Seckin N., Cobaner M., Yurtal R., Haktanir T., Comparison of Artificial Neural Network Methods with L-moments for Estimating Flood Flow at Ungauged Sites:the Case of East Mediterranean River Basin, Turkey. Water Resources Management, 27 (7), 2103-2124, 2013.
  • 45. Seckin N., Yurtal R., Haktanir T., Regional flood frequency analysis for gauged and ungauged cathments of seyhan river basin in Turkey, Journal of Engineering, 2 (1), 47-70, 2014.
  • 46. Seckin N., Modeling flood discharge at ungauged sites across Turkey using neuro-fuzzy and neural networks. Journal of Hydroinformatics, 13 (4), 842, 2011.
  • 47. Haktanir T., Citakoglu H., Seckin N., Regional frequency analyses of successive-duration annual maximum rainfalls by L-moments method, Hydrological Sciences Journal. Doi: 10.1080/02626667.2014.966722, 2015.
  • 48. Adamowski K., Liang, G., Patry G.G., Annual maxima and partial duration flood series analysis by parametric and non-parametric methods, Hydrological Processes, 1685-99, 1998.
  • 49. Begueria S., Uncertainties in partial duration series modelling of extremes related to the choice of the threshold value, Journal of Hydrology, 215-230, 2005.
  • 50. Madsen H., Rosbjerg D., Generalized least squares and empirical Bayes estimation in regional partial duration series index-flood modeling, Water Resources Research, 771-81, 1997.
  • 51. Wilks D.S., Comparison of three-parameter probability distributions for representing annual extreme and partial duration precipitation series, Water Resources Research, 3543-49, 1993. 52. Onoz B., Bayazit M., Effect of the occurrence process of the peaks over threshold on the flood estimates, Journal of Hydrology, 86-96, 2001.
  • 53. Pandey M.D., Van Gelder P.H.A.J.M., Vrijling J.K. Dutch case studies of the estimation of extreme quantiles and associated uncertainty by bootstrap simulations, Environmetrics, 687-99, 2004.
  • 54. Dedun S., Jing D., The Applications of Probability Weighted Moments in Estimating The Parameters of The Pearson Type Three Distribution, Journal of Hydrology, 47-61, 1988.
  • 55. Jing D., Dedun S., Ronfu Y., Further Research on Applications of Probability Weighted Moments in Estimating Parameters of the Type Three Distributions, Journal of Hydrology, 239-257, 1989
  • 56. Landwehr J.M., Matalas N.C., Wallis J.R., Probability Weighted Moments Compared with Some Traditional Techniques in Estimating Gumbel Parameters and Quantiles, Water Resources Research, 15 (5), 1055- 1064, 1979.
  • 57. Landwehr J.M., Matalas N.C., Wallis J.R., Estimation of Parameters and Quantiles of Wakeby Distributions, 1.Know Lover Bounds, Water Resources Research, 15 (6), 1361-1372, 1979b.
  • 58. Landwehr J.M., Matalas N.C., Wallis J.R., Estimation of Parameters and Quantiles of Wakeby Distributions, 1.UnKnow Lover Bounds, Water Resources Research, 15 (6), 1373-1379, 1979c.
  • 59. Phien H.N., A Review of Methods of Parameter Estimation for The Extreme Value Type-1 Distribution, Journal of Hydrology, 251-267, 1987.
  • 60. Raynal J.A., Salas, J.D., Estimation Procedures for the Type-1 Extreme Value Distribution, Journal of Hydrologic Engineering, 169-179, 1986.
  • 61. Greenwood J.A., Landwehr J.M., Matalas N.C., Wallis J.R., Probability Weighted Moments: Definition and Relation to Parameters of Several Distribution Exprensible in Inverse Form, Water Resources Research, 15 (5), 1049-1054, 1979.
  • 62. Hosking J.R.M., The Theory of Probability Weighted Moments, Research Rep, RC 12210, 160 pp., IBM Research Division, Yorktown Heights, NY, 1986.
  • 63. Ahmad M.I., Sinclair C.D., Werritty A., Log-logistic Flood Frequency Analysis, Journal of Hydrology, 98, 205-224, 1988.
  • 64. Gebeyehu A., Regional Flood Frequency Analysis, The Royal Institute of Technology, Stockholm, Sweden, Bulletin No, TRIVA-VBI-148, 1989.
  • 65. Şorman Ü., Okur A., L-momentler Tekniği Kullanılarak Noktasal ve Bölgesel Frekans Analizinin Uygulanması, İMO Teknik Dergi, 2199-2216, 2000. 66. Dalrymple T., Flood Frequency Methods, U. S. Geol. Survey, Water Supply Paper 1453 A, 11-51, Washington, 1960.
  • 67. Hosking J.R.M., Wallis J.R., Some Statistics useful in regional frequency analysis, Water Resources Research, 271-281, 1993.
  • 68. Armstrong J.S., F Collopy., Error Measures for Generalizing About Forecasting Methods: Empirical Comparisons, International Journal of Forecasting, 69- 80, 2000.
  • 69. Hosking J.R.M., FORTRAN Routines for Use with the Method of L-Moments. Version 3.03,(http://lib.stat.cmu.edu/general/lmoments), 2000.
  • 70. Seçkin N., Adana ve Çevre İllerde Gözlenen Yıllık Maksimum Yağışların Bölgesel Frekans Analizi, Bilimsel Araştırma Projesi, Proje No MMF2011BAP2, Ç.Ü İnşaat Mühendisliği Bölümü, Adana, 70, 2013.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ