Sol-Gel Döner Kaplama Yöntemiyle Oluşturulmuş Ta2O5 İnce Film Kondansatörün Düşük Sıcaklık Bölgesi Dielektrik Özellikleri ve AC İletkenlik Davranışı

Kalınlığı 75 nm olan tantal penta oksit (Ta2O5)  ince film kondansatör Sol-Gel döner kaplama işlemi ile Corning cam taşıyıcılar üzerinde elde edildi ve film kondansatörün dielektrik sabiti  ε¢,  dielektrik kayıp faktörü ε² ve AC iletkenlik davranışı 293–193 K sıcaklık aralığında, 10 Hz–100 kHz frekans değerlerine bağlı olarak incelendi. Ta2O5 ince film kondansatörün dielektrik sabiti ε¢, azalan sıcaklıkla 1 kHz değeri için, 293–193 K aralığında 15 ila 7 değerlerinde bulundu. Dielektrik sabiti ε¢ ve dielektrik kayıp ε² nün azalan sıcaklık ve frekans değerleri ile azalmakta olduğu belirlendi. Maksimum engel yüksekliği  Wm, farklı sıcaklıklarda  dielektrik kayıp faktörü ε" nün frekansa bağlılığından hesaplandı ve değeri sırasıyla 10 Hz–2 kHz ve 2 kHz–12 kHz frekans aralığı için 0,14 eV ve 0,093 eV olarak bulundu. Bu tip dielektrik özellikler taşıyıcı zıplama, yüzeylerarası ve dipolar polarizasyon mekanizmaları ile ilişkilendirildi. Ta2O5 ince film kondansatörün AC iletkenliğinin sıcaklığa bağlılığının yüksek frekans bölgesinden çok düşük, frekans bölgesine bağlı olduğu bulundu. AC iletkenliğin sıcaklığa bağlılığının engel üzerinden zıplamayla ilişkilendirilmiş (CBH) modeli ile uyumlu olduğu belirlendi.

Low Temperature Range Dielectric Properties and AC Conductivity Behavior of Ta2O5 Thin Film Capacitor Formed with Sol-Gel Spin Coating Method

The dielectric constant ε¢  and the dielectric loss factor ε² and AC conductivity of 75 nm thickness tantalum pentaoxide (Ta2O5)thin film capacitor, produced by sol-gel spin coating process on Corning glass substrates, have been investigated in the frequency range of 10 Hz – 100 kHz and the temperature range of 293–193 K.  It was found that dielectric constant ε¢ of the Ta2O5 thin film capacitor changes between 9 and 7 at 1 kHz  with decreasing temperature in the range of 293–193 K. The dielectric constant ε¢ and dielectric loss ε² were found to decrease with decreasing frequency and temperature. The maximum barrier height Wm is calculated from the frequency dependence of the dielectric loss ε" at different temperatures. Its value obtained 0.14 eV and 0.093 eV at 10 Hz–2 kHz and 2 kHz–12 kHz frequency range respectively. This type of dielectric properties was associated with a carrier hopping process, interfacial and dipolar polarization processes. The AC conductivity of Ta2O5 thin film capacitor was found more dependent on temperature in the low frequency region than in the high frequency region. It has been determined that the temperature dependence of AC conductivity  is compatible with the Correlated Barrier Hopping (CBH) model.

___

  • C.T. Wu, F.H. Ko, and C.H. Lin, “Self-organized tantalum oxide nanopyramidal arrays for antireflective structure”, Applied Physics Letter, 90: (2007) 171911-171913.
  • L. Chen, H. Nishimura, K. Fukumi, J. Nishii, K. Hirao, Fabrication of multilayer thin film filters by hydrofluoric acid bonding, Applied Surface Science, 253: (2007) 4906-4910.
  • M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura, T. Nabatame, “Rutile-type TiO2 thin film for high-k gate insulator”, Thin Solid Films, 424: (2003) 224-228.
  • K.W. Kwon, I.S. Park, D.H. Han, E.S. Kim, S.T. Ahn, M.Y. Lee, “Ta2O5 capacitors for 1Gbit DRAM and beyond”, IEEE International Electron Device Meeting, 94: (1994) 835-838.
  • Y.Takaishi, M. Sakao, S. Kamiyama, H. Suzuki, W.Watanable, “Low-temperature integrated process below 500oC for thin Ta2O5 capacitor for giga-bit DRAMs”, IEEE International Electron Device Meeting, 94: (1994) 839-842.
  • H. Fujikawa,Y.Taga, “Effects of additive elements on electrical properties of tantalum oxide films”, Applied Physics., 75: (1994) 2538-2542.
  • R.F.Cava, W.F. Peck Jr., J.J. Krajewski, “Enhancement of the dielectric constant of Ta2O5 through substitution with TiO2”, Nature, 377: (1995) 215-217.
  • N. Arshi, J. Lu, C.G. Lee, B.H. Koo, F. Ahmed, “Effect of substrate temperature on the properties of electron beam deposited tantalum films”, Thin Solid Films, 546: (2013) 22-25.
  • M.S. Farhan, E. Zalnezhad, A.R. Bushroa, “Properties of Ta2O5 thin films deposited by dc reactive magnetron sputtering”, Materials Research Bulletin, 48: (2013) 4206-4209.
  • S.C. Wang, K. Y. Liu, J.L. Huang, “Tantalum oxide film prepared by reactive magnetron sputtering deposition for all-solid-state electrochromic device”, Thin Solid Films, 520: (2011) 1454-1459.
  • G. Stanciu, M. Filipescu, V. Ion, E. Andronescu, M. Dinescu, “Optical properties of Tantalum oxide thin films obtained by laser deposition techniques”, UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 75: (2013) 15-22.
  • M. Oubaha, S. Elmaghrum, R. Copperwhite, B. Corcoran, C. Mcdonagh, A. Gorin, “Optical properties of high refractive index thin films processed at low-temperature”, Optical Materials, 34: (2012) 1366-1370.
  • F.E. Ghodsi, F.Z. Tepehan, G.G. Tepehan, “Optical properties of Ta2O5 thin films deposited using the spin coating process”, Thin Solid Films, 295: (1997) 11-15.
  • F.Z. Tepehan, F.E. Ghodsi, N. Ozer and G.G. Tepehan, “Optical properties of sol–gel dip-coated Ta2O5 films for electrochromic applications”, Solar Energy Materials and Solar Cells, 59: (1999) 265-275.
  • S. Yildirim, K. Ulutas, D. Deger, E.O. Zayim, I. Turhan, “Dielectric properties of sol-gel derived Ta2O5 thin films”, Vacuum, 77: 3 (2005) 329-335.
  • S.I. Kimura, Y. NI Shioka, A. Shintani and K. Mukai, “Leakage‐Current Increase in Amorphous Ta2 O5 Films Due to Pinhole Growth during Annealing Below 600°C”, Journal of Electrochemical Society, 130: (1983) (2414-2418.
  • T. Aoyama, S. Saidu, Y. Okayama, M. Fujisaki, K. Imai and T. Arikado, “Leakage Current Mechanism of Amorphous and Polycrystalline Ta2 O 5 Films Grown by Chemical Vapor Deposition”, Journal of Electrochemical Society, 143: (1996) 977-983.
  • F. C. Chiu, J. J. Wang, J. Y. Lee and S. C. Wu, “Leakage currents in amorphous Ta2O5 thin films”, Journal of Applied Physics, 81: (1997) 6911-6915.
  • Y. Nishioka, N. Homma, H. Shinriki, K. Mukai, K. Yamaguchi, A. Uchida, K. Higeta and K. Ogiue, “Ultra thin Ta2O5 dielectric film for high-speed bipolar”, IEEE Transaction Electron Devices, 34: (1987) 1957-1962.
  • S. Roberts, J. Ryan and L. Neshi T, “Selective studies of Crystalline Ta2O5 films”, Journal of Electrochemical Society, 133: (1986) 1405-1410.
  • D. Deger, K. Ulutas, S. Yildirim, N. Kalkan, “Relaxation spectrum of the TlSbSe2 thin films”, Physica B: Physics Condensed Matter, 404: (2009) 5231-5233.
  • A. Sharma, N. Mehta, A. Kumar, “Dielectric relaxation in Se80-xTe20Snx chalcogenide glasses”, Journal of Material Science, 46: (2011) 4509-4516.
  • K. Mageshwari, R. Sathyamoorthy, P. Sudhagar, Y.S. Kang, “Dielectric and relaxation properties of thermally evaporated nanostructured bismuth sulfide thin films”, Applied Surface Science, 257: (2011) 7245-7253.
  • K. Shimakawa, “On the temperature dependence of a.c. conduction in chalcogenide glasses”, Philosophical Magazine, 46: (1982) 123-135.
  • L.S. Palatnik et al., “Structure of TlSbS2 thin films”, Vacuum, 24: (1974) 142.
  • D. Matsushita, Y. Nishikawa, N. Satou, M Yoshiki, T Schimizu, T Yamaguchi, H. Satake, N. Fukushima, “Enhancement of dielectric constant due to expansion of lattice spacing in CeO2 directly grown on Si(111)”, Japaniese Journal Applied Physiscs, 43: (2004) 1795-1798.
  • C. Chaneliere, J.L. Autran, R.A.B. Devine, B. Balland, “Tantalyum pentoxide (Ta2O5) thin films for advanced dielectric applications”, Materials Science and Engineering, R22: (1998) 269-322.
  • Y. Kavanagh, M.J. Alam, D.C. Cameron, “The characteristic of thin film electroluminescent displays produced sol-gel produced tantalum pentoxide and zinc sulfide”, Thin Solid Film, 447-448: (2004) 85-89.
  • E. Atanassova, A. Paskaleva, R. Konakova, D. Spassov, V.F. Nitin, “Influence of  radiation on thin Ta2O5-Si structures”, Microelectronics Journal, 32: (2001) 553-562.
  • A. Poporati, S. Roitti, O. Sbaizero, “Metallorganic chemical vapor deposition of Ta2O5 films”, Journal of the European Ceramic Society, 23: (2003) 247-251.
  • B. Tareev, (1975). Physics of dielectric materials. Moscow: MIR Publishers, P107.
  • J.C. Giuntini, J.V. Zancheha, “Use of conduction models in the study of low temperature carbons”, Journal of Non-Crystalline Solids, 34: (1979) 419-424.
  • S.R. Elliott, “ A theory of a.c. conduction in chalcogenide glasses”, Philosophical Magazine B, 36: (1978) 1291-1304.
  • S.R. Elliott, “Temperature dependence of ac conductivity of chacogenide glasses”, Philosophical Magazine, 37: (1978) 553-560.
  • L. Sullivan, H.C. Card, “Conduction in amorphous thin films of silicon nitride under non-uniform electric fields”, Journal of Physics D: Applied Physics, 7: (1974) 1531-1539.
  • S.M. Sze, “Current transport and maximum dielectric strength of silicon nitride films”, Journal of Applied Physics, 38: (1967) 2951-2956.
  • R.D. Gould, S.A. Awan, “Dielectric properties of RF-sputtered silicon nitride thin films with gold electrodes”, Thin Solid Films, 433: (2003) 309-314.
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Gazi Üniversitesi , Fen Bilimleri Enstitüsü