PV Modüller/Hücrelerin Tek-Diyot Eşdeğer Devre Parametrelerinin Kestirimi İçin Yeni Bir Analitik Model

Bu çalışmada PV modüller için tek-diyot eşdeğer devre parametrelerinin belirlenmesine ilişkin analitik bir model önerilmektedir. Çalışmada ilk olarak literatürde mevcut çok sayıda PV modüller için kısa devre akımı (Isc) ve foton akımı (Ipv) değerleri kullanılarak eğri uydurma yöntemi ile akımlar arasında bir matematiksel bağıntı oluşturulmuştur. Daha sonra, akımlar arasında geliştirilen bu bağıntı eşdeğer devre denklemlerinde kullanılarak 3 bilinmeyenli (Rp, Rs ve a) denklem sisteminden oluşan analitik model geliştirilmiştir. Yapılan analizler, model ile elde edilen eşdeğer devre parametrelerinin ve sonucunda oluşturulan I-V ve P-V karakteristiklerinin deneysel veriler ile çok büyük oranda örtüştüğünü göstermektedir. Bu nedenle hesaplanan ve gerçek veriler arasındaki Hatanın Ortalama Karekökü (RMSE) ve Belirleme Katsayısı (R2) değerleri ihmal edilebilir düzeyde bulunmuştur. Ayrıca modelin diğer yöntemlere göre parametre kestiriminde kullanım kolaylığı, deneysel verilere daha az ihtiyaç duyma ve tüm parametreleri belirleyebilme gibi avantajları olduğunu söylemek mümkündür.

PV Modüller/Hücrelerin Tek-Diyot Eşdeğer Devre Parametrelerinin Kestirimi İçin Yeni Bir Analitik Model

Bu çalışmada PV modüller için tek-diyot eşdeğer devre parametrelerinin belirlenmesine ilişkin analitik bir model önerilmektedir. Çalışmada ilk olarak literatürde mevcut çok sayıda PV modüller için kısa devre akımı (Isc) ve foton akımı (Ipv) değerleri kullanılarak eğri uydurma yöntemi ile akımlar arasında bir matematiksel bağıntı oluşturulmuştur. Daha sonra, akımlar arasında geliştirilen bu bağıntı eşdeğer devre denklemlerinde kullanılarak 3 bilinmeyenli (Rp, Rs ve a) denklem sisteminden oluşan analitik model geliştirilmiştir. Yapılan analizler, model ile elde edilen eşdeğer devre parametrelerinin ve sonucunda oluşturulan I-V ve P-V karakteristiklerinin deneysel veriler ile çok büyük oranda örtüştüğünü göstermektedir. Bu nedenle hesaplanan ve gerçek veriler arasındaki Hatanın Ortalama Karekökü (RMSE) ve Belirleme Katsayısı (R2) değerleri ihmal edilebilir düzeyde bulunmuştur. Ayrıca modelin diğer yöntemlere göre parametre kestiriminde kullanım kolaylığı, deneysel verilere daha az ihtiyaç duyma ve tüm parametreleri belirleyebilme gibi avantajları olduğunu söylemek mümkündür.

___

  • [1] Keskin V, Khalejan SHPR, Çıkla R. Investigation of the Shading Effect on the Performance of a grid-connected PV Plant in Samsun/Turkey. Politeknik Dergisi. 2021; 24(2): 553-563.
  • [2] Hejri M, Mokhtari H, Azizian MR, Söder L. An analytical-numerical approach for parameter determination of a five-parameter single-diode model of photovoltaic cells and modules. International Journal of Sustainable Energy. 2016; 35(4): 396–410.
  • [3] Chan DSH, Phang JCH. Analytical methods for the extraction of solar-cell single-and double-diode model parameters from IV characteristics. IEEE Trans. on Electron Devices. 1987; 34(2): 286–293.
  • [4] Shongwe S, Hanif M. Comparative analysis of different single-diode PV modeling methods. IEEE Journal of Photovoltaics. 2015; 5(3): 938–946.
  • [5] Sera D, Teodorescu R, Rodriguez P. PV panel model based on datasheet values. IEEE international symposium on industrial electronics. 2007; 2392–2396.
  • [6] Reis LRD, Camacho JR, Novacki DF. The Newton Raphson method in the extraction of parameters of PV modules. International Conference on Renewable Energies and Power Quality. 2017; 1(15): 634–639.
  • [7] Patel S. The single diode model of IV and PV characteristics using the lambert w function. International Journal of Innovative Research in Science Engineering and Technology. 2016; 5(5): 7034–7039.
  • [8] Kareem MSA, Saravanan M. A new method for accurate estimation of PV module parameters and extraction of maximum power point under varying environmental conditions. Turkish Journal of Electrical Engineering and Computer Sciences. 2016; 24(4): 2028–2041.
  • [9] Atay BK, Eminoğlu U. A new approach for parameter estimation of the single-diode model forphotovoltaic cells/modules. Turkish Journal of Electrical Engineering and Computer Sciences. 2019; 27(4): 3026–3039.
  • [10] Chaibi Y, Salhi M, El-Jouni A, Essadki A. A new method to extract the equivalent circuit parameters of a photovoltaic panel. Solar Energy. 2018; 163: 376–386.
  • [11] Cubas J, Pindado S, Farrahi A. New method for analytical photovoltaic parameter extraction. International Conference on Renewable Energy Research and Applications (ICRERA). 2013; 873–877.
  • [12] Farivar G, Asaei B. Photovoltaic module single diode model parameters extraction based on manufacturer datasheet parameters. IEEE International Conference on Power and Energy. 2010; 929–934.
  • [13] Shannan NMAA, Yahaya NZ, Singh B. Single-diode model and two-diode model of PV modules: A comparison. IEEE International Conference on Control System, Computing and Eng. 2013; 210–214.
  • [14] Yahfdhou A, Mahmoud AK, Youm I. Evaluation and determination of seven and five parameters of a photovoltaic generator by an iterative method. Smart Grid and Renewable Energy. 2016; 7: 247-260.
  • [15] Hejri M, Mokhtari H, Azizian MR, Ghandhari M, Söder L. On the parameter extraction of a five-parameter double-diode model of photovoltaic cells and modules. IEEE Journal of Photovoltaics. 2014; 4(3): 915–923.
  • [16] Mohapatra A, Nayak B, Mohanty KB. Parameter Extraction of PV Module using NLS Algorithm with Experimental Validation. International Journal of Electrical and Computer Engineering. 2017; 7(5): 2392.
  • [17] Zagrouba M, Sellami A, Bouaïcha M, Ksouri M. Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction. Solar Energy. 2010; 84(5): 860–866.
  • [18] Sandrolini L, Artioli M, Reggiani U. Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis. Applied Energy. 2010; 87(2): 442–451.
  • [19] Muralidharan R. Parameter extraction of solar photovoltaic cells and modules using current–voltage characteristics. International Journal of Ambient Energy. 2017; 38(5): 509–513.
  • [20] Nunes HGG, Pompo JAN, Mariano SJPS and Calado MRA. A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization. Applied Energy. 2018; 211:774-791.
  • [21] Ishaque K, Salam Z. An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE). Solar Energy. 2011; 85 (9): 2349-2359.
  • [22] Li S, Gong W, Yan X, Hu C, Bai D, Wang L. Parameter estimation of photovoltaic models with memetic adaptive differential evolution. Solar Energy. 2019; 190: 465–474.
  • [23] Elazab OS, Hasanien HM, Alsaidan I, Abdelaziz AY, Muyeen SM. Parameter estimation of three diode photovoltaic model using grasshopper optimization algorithm. Energies. 2020; 13(2): 497.
  • [24] Goldberg, D.E. (1989). Genetic algorithms in search optimization and machine learning. Boston: Addison Wesley Publishing Company MA, USA.
  • [25] Kennedy J, Eberhart RC. Particle swarm optimization. IEEE International Conference on Evolutionary Computation (ICNN’95) Perth, WA, Australia. 1995; 1942-1948.
  • [26] Storn R, Price K. Differential Evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization. 1997; 11(4): 341-35.
  • [27] Saravanan C, Panneerselvam MA. A comprehensive analysis for extracting single diode PV model parameters by hybrid GA-PSO algorithm. International Journal of Computer Applications. 2013; 78: 16-19.
  • [28] Castro R. Data-driven PV modules modelling: Comparison between equivalent electric circuit and artificial intelligence based models. Sustainable Energy Technologies and Assessments. 2018; 30: 230-238.
  • [29] Hamid NFA, Rahim NA, Selvaraj J. Solar cell parameters identification using hybrid Nelder-Mead and modified particle swarm optimization. Journal of Renewable and Sustainable Energy. 2016; 8: 1-21.
  • [30] Tong NT, Pora W. A parameter extraction technique exploiting intrinsic properties of solar cells. Applied Energy. 2016; 176: 104-115.
  • [31] Rasool F, Drieberg M, Badruddin N, Singh BSM. PV panel modeling with improved parameter extraction technique. Solar Energy. 2017; 152: 519-530.
  • [32] Bencherif M, Benouaz T. Parameter extraction of solar panels using the graphical method. International Journal of Ambient Energy. 2018; 1-18.
  • [33] Hussein A. A simple approach to extract the unknown parameters of PV modules. Turkish Journal of Electrical Engineering & Computer Sciences. 2017; 25: 4431-4444.
  • [34] Amin YK, Shahhoseini A. A fast modeling of the double-diode model for PV modules using combined analytical and numerical approach. Solar Energy. 2018; 162: 403-409.
  • [35] Villalva MG, Gazoli JR, and Filho ER. Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. 2009; 24(5): 1198-1208.
  • [36] Pelap PB, Dongo PD, Kapim AD, Optimization of the characteristics of the PV cells using nonlinear electronic components. Energy Technologies and Assessments. 2016; 16: 84-92.
  • [37] Chapra, S.C. and Canale, R.P. (1988). Numerical Methods for Engineers. New York: McGraw-Hill.
  • [38] Matlab R2010b Enterprise.
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Gazi Üniversitesi , Fen Bilimleri Enstitüsü