Östemperlenmiş Küresel Grafitli Dökme Demirlerde İndüksiyonla Yüzey Sertleştirmenin Yorulma Sınırı Üzerine Etkisi

Bu çalışmada, östemperlenmiş küresel grafitli dökme demirlerde indüksiyonla yüzey sertleştirmenin yorulma sınırı üzerine etkisi araştırılmıştır. Bu amaçla, GGG70 sınıfı küresel grafitli dökme demir numuneler; 900°C’de 90 dk östenitlenmiş ve ardından 375°C sıcaklıktaki tuz banyosunda 120 dk östemperlenmiştir. Daha sonra dökülmüş ve östemperlenmiş koşullardaki yorulma numunelerine yüksek frekanslı indüksiyonla yüzey sertleştirme uygulanmıştır. Dökülmüş halde, östemperlenmiş, dökülmüş halde + indüksiyonla sertleştirilmiş ve östemperlenmiş+indüksiyon ile sertleştirilmiş numunelerin yorulma sınırları, dönel eğmeli yorulma testi cihazı belirlenmiştir. Deneysel sonuçlar, test edilen numuneler arasında en iyi yorulma sınırı sonuçlarını östemperlenmiş+yüzeyi indüksiyonla sertleştirilmiş numunelerin sergilediğini göstermiştir. 

___

  • [1] Nofal, A., Jekova, L. Novel processing techniques and applications of austempered ductile iron. J.Univ. of Chem. Tech. and Metall., 44(213-228), (2009).
  • [2] Bartosiewicz, L., Krause, A., Alberts, F., Singh, I., Putatunda, S.K. Influence of microstructure on high-cycle fatigue behavior of austempered ductile cast iron. Mater. Charac., 30(221-234), (1993).
  • [3] Bartosiewicz, L., Krause, A., Kovacs, B., Putatunda, S.K. Fatigue Crack Growth, Behaviour of Austempered Ductile Cast Iron. AFS Trans., 92(135-142), (1992).
  • [4] Dodd, J. High strength, high ductility, ductile irons. Modern Casting, 68(60-66), (1978).
  • [5] Gundlach, R.B., Janowak, J.F. Austempered ductile iron combines strength with toughness and ductility. Metal Progress, 128(19-26), (1985).
  • [6] Harding, R. Why the properties of austempered ductile irons should interest engineers. British Foundryman, 79(489-496), (1986).
  • [7] Johansson, M. Austenitic-bainitic ductile iron. AFS Trans., 85((1977).
  • [8] Putatunda, S.K. Development of austempered ductile cast iron (ADI) with simultaneous high yield strength and fracture toughness by a novel two-step austempering process. Materi. Sci. and Eng. A, 315(70-80), (2001).
  • [9] Schmidt, I., Schuchert, A. Unlubricated sliding wear of austempered ductile iron. Z. Metallkd., 78(871-875), (1987).
  • [10] Shanmugam, P., Rao, P.P., Udupa, K.R., Venkataraman, N. Effect of microstructure on the fatigue strength of an austempered ductile iron. J. Mater. Sci., 29(4933-4940), (1994).
  • [11] Keough, J., Hayrynen, K., Pioszak, G. Designing with austempered ductile iron (ADI). AFS Trans., 118(1-15), (2010).
  • [12] Kovacs, B. Development of austempered ductile iron (ADI) for automobile crankshafts. Journal of Heat Treating, 5(55-60), (1987).
  • [13] Druschitz, A.P., Thelen, S. Induction hardened ductile iron camshafts. SAE 2002 World Congress & Exhibition, (2002).
  • [14] Kim, J.-D., Ji, J.-K. Effect of super-rapid induction quenching on fatigue fracture behavior of spherical graphite cast iron FCD500. J. Mater. Proc. Tech., 176(19-23), (2006).
  • [15] Ma, H. (2012). The Quantitative Assessment of Retained Austenite in Induction Hardened Ductile Iron, University of Winsdor.
  • [16] Misaka, Y., Kawasaki, K., Komotori, J., Shimizu, M. Fatigue strength of ferritic ductile cast iron hardened by super rapid induction heating and quenching. Mater. Trans., 45(2930-2935), (2004).
  • [17] Nateq, M.H., Kahrobaee, S., Kashefi Torbati, M. Nondestructive characterization of induction hardened cast iron parts. 2nd International Conference on Materials Heat Treatment, (2011).
  • [18] Rudnev, V.I. Induction Hardening Cast Iron. Heat Treating Progress, 3(27-32), (2003).
  • [19] Smoljan, B., Cajner, F., Landek, D. An analysis of induction hardening of ferritic ductile iron. J. Mater. Eng. Perform., 11(278-282), (2002).
  • [20] Mahmoud, A., Mohamed, M. Laser Surface Hardening of Ductile Cast Iron. Machines, Technologies, Materials, 12(3-6), (2013).
  • [21] Roy, A., Manna, I. Mathematical modeling of localized melting around graphite nodules during laser surface hardening of austempered ductile iron. Optics and Lasers in Eng., 34(369-383), (2000).
  • [22] Roy, A., Manna, I. Laser surface engineering to improve wear resistance of austempered ductile iron. Materi. Sci. and Eng. A, 297(85-93), (2001).
  • [23] Sohi, M.H., Karshenas, G., Boutorabi, S. Electron beam surface melting of as cast and austempered ductile irons. J. Mater. Proc. Tech., 153(199-202), (2004).
  • [24] Soriano, C., Leunda, J., Lambarri, J., Navas, V.G., Sanz, C. Effect of laser surface hardening on the microstructure, hardness and residual stresses of austempered ductile iron grades. Applied Surf. Sci., 257(7101-7106), (2011).
  • [25] Suh, D., Lee, S., Koo, Y., Kwon, S.-J. Surface hardening of a ductile-cast iron roll using high-energy electron beams. Metall. Mater. Trans. A, 28(1499-1508), (1997).
  • [26] Wade, N., Ueda, Y. Continuous Heating Transformation of Spheroidal Graphite Cast Iron. Trans. Iron Steel Inst. Jpn., 20(857-861), (1980).
  • [27] Bahmani, M., Elliott, R., Varahram, N. The relationship between fatigue strength and microstructure in an austempered Cu-Ni-Mn-Mo alloyed ductile iron. Journal of Mater. Sci., 32(5383-5388), (1997).
  • [28] Greno, G., Pardo, E., Boeri, R. Fatigue of austempered ductile iron. AFS Trans., 106(31-37), (1998).
  • [29] Jahangiri, M., Ahmadabadi, M.N., Farhangi, H. Enhancement of fatigue properties of ductile irons by successive austempering heat treatment. J. Mater. Eng. Perform., 20(1642-1647), (2011).
  • [30] Luo, J., Bowen, P., Harding, R. Evaluation of the fatigue behavior of ductile irons with various matrix microstructures. Metall. Mater. Trans. A, 33(3719-3730), (2002).
  • [31] Salman, S., Fındık, F., Topuz, P. Effects of various austempering temperatures on fatigue properties in ductile iron. Mater. & Des., 28(2210-2214), (2007).
  • [32] Tayanc, M., Aztekin, K., Bayram, A. The effect of matrix structure on the fatigue behavior of austempered ductile iron. Mater. & Des., 28(797-803), (2007).
  • [33] Toktaş, G., Toktaş, A., Tayanç, M. Influence of matrix structure on the fatigue properties of an alloyed ductile iron. Mater. & Des., 29(1600-1608), (2008).
  • [34] Yamanaka, M., Tamura, R., Inoue, K., Narita, Y. Bending fatigue strength of austempered ductile iron spur gears. Journal of Adv. Mech. Des. Sys. and Man., 3(203-211), (2009).
  • [35] Ovali, I., Kilicli, V., Erdogan, M. Effect of microstructure on fatigue strength of intercritically austenitized and austempered ductile irons with dual matrix structures. ISIJ Int., 53(375-381), (2013).
  • [36] Ovali, I. (2006). Kritik Tavlama Sıcaklıklarından Östemperlenmiş Çift Matrisli Alaşımsız Küresel Grafitli Dökme Demirlerin Yorulma Özellikleri, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 31-32.
  • [37] Wohlfahrt, M., Oberwinkler, C., Tunzini, S., Rauscher, A., de la Prida Caballero, R., Eichlseder, W. The role of sampling position on fatigue of austempered ductile iron. Procedia Eng., 2(1337-1341), (2010).
  • [38] Lin, C.-K., Lai, P.-K., Shih, T.-S. Influence of microstructure on the fatigue properties of austempered ductile irons—I. High-cycle fatigue. Int. J. Fatigue, 18(297-307), (1996).