Stronsiyum Katkılı Biyocam ve Bakır Nanoparçacıklarından 3D Kompozit Yapı İskelesi Üretimi

Bu çalışmada, çözücü döküm ve tanecik uzaklaştırma yöntemi kullanılarak, çok işlevli yapı iskelelerinin geliştirilmesi için ilgili iyonlarla BG / polimer 3D kompozit yapı iskelelerinin üretilmesi amaçlanmıştır. Gözenekli yapıya sahip yapı iskeleleri başarıyla sentezlenmiş ve yapı iskelelerinin mikroyapısında iyi bir gözenek bağlantısının bulunduğu gözlemlenmiştir. Kompozit yapı iskelelerinin in vitro biyoaktivitesi; Taramalı Elektron Mikroskopisi (SEM), X-ışını kırınımı ve Fourier-Dönüşümlü Kızılötesi Spektroskopi ölçümleri ile teyit edilmiştir. Bunun dışında, terapötik iyonların salınımının; SBF'de kalma sürelerinin bir fonksiyonu olarak, stronsiyum ve bakır iyonları için sırasıyla 1.27-5.36 ppm ve 1.53-5.42 ppm aralığında değiştiği belirlenmiştir. Bu sonuç yapı iskelelerinin, kemik dokusu rejenerasyonunun belirleyicisi olan SBF ortamına, stronsiyum ve bakır dozlarının kontrollü olarak verebileceğini göstermiştir.

___

  • [1] V.M. Correlo, J.M. Oliveira, J.F. Mano, N.M. Neves, R.L. Reis, Natural origin materials for bone tissue engineering–properties, processing, and performance, Principles of Regenerative Medicine, 2nd ed., (Ch. 32, Part 3), Academic Press, London, 2011.
  • [2] H.W. Tong, M. Wang, Electrospinning of poly(hydroxybutyrate–co–hydroxyvalerate) fibrous scaffolds for tissue engineering applications: effects of electrospinning parameters and solution properties, Journal of Macromolecular Science Part B, 50: 8 (2011) 1535–1558.
  • [3] W. Wang, K.W. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive Materials. 2 (2017) 224-247.
  • [4] T. Fiedler, A.C. Videira, P. Bártolo, M. Strauch, G.E. Murch, G.E. J.M.F. Ferreira, On the mechanical properties of PLC–bioactive glass scaffolds fabricated via Bio Extrusion, Material Science and Engineering C, 57 (2015) 288–293.
  • [5] Y. Ito, H. Hasuda, M. Kamitakahara, C. Ohtsuki, M. Tanihara, I.K. Kang, O.H. Kwon, A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material”, Journal of Bioscience and Bioengineering, 100 : 1 (2005) 43–49.
  • [6] Y.H. Kim, Y.K. Min, B.T. Lee, Fabrication and material properties of fibrous PHBV scaffolds depending on the cross–ply angle for tissue engineering, Journal of Biomaterials Applications, 27 : 4 (2012) 457–468.
  • [7] Q. Chen, J.A. Roether, A.R. Boccaccini, Tissue engineering scaffolds from bioactive glass and composite materials, Topics in Tissue Engineering, Vol. 4 (Ch. 6), Biomaterials and Tissue Engineering Group, 2008.
  • [8] A.R. Boccaccini, V. Maquet, Bioresorbable and bioactive polymer Bioglass® composites with tailored pore structure for tissue engineering applications, Composites Science and Technology, 63 ; 16 (2003) 2417–2429.
  • [9] G. Kaur, P. Pandey, K. Singh, D. Homa, B. Scott, G. Pickrell, A review of bioactive glasses: Their structure, properties, fabrication, and apatite formation, Journal of Biomedical Materials Research Part A, 102A (2014) 254–274.
  • [10] L.L. Hench, R.J. Splinter, W.C. Allen, Bonding mechanisms at the interface of ceramic prosthetic materials, Journal of Biomedical Materials Research Part A, 5 : 6 (1971) 117–141.
  • [11] D. Fırat Öztopalan, A.S. Durmuş, Kemik grefti yerine biyoaktif cam kullanımı. Dicle Üniversitesi Veterinerlik Fakültesi Dergisi, 10 : 1 (2017) 56-61.
  • [12] K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27 : 18 (2006) 3413–3431.
  • [13] V. Guarino, F. Causa, L. Ambrosio, Bioactive scaffolds for bone and ligament tissue, Expert Review of Medical Devices, 4 : 3 (2007) 405-418.
  • [14] E. Zeimaran, S. Pourshahrestani, I. Djordjevic, B. Pingguan-Murphy, N.A. Kadri, M.R. Towler, Bioactive glass reinforced elastomer composites for skeletal regeneration: A review, Material Science of Engineering C, 53 (2015) 175–188.
  • [15] Q. Yao, W. Li, S. Yu, L. Ma, D. Jin, A.R. Boccaccini, Y. Liu, Multifunctional chitosan/polyvinyl pyrrolidone/45S5 Bioglass® scaffolds for MC3T3-E1 cell stimulation and drug release, Material Science of Engineering C, 56 (2015) 473–480.
  • [16] Y.W. Chen, G.Q. Shi, Y.L. Ding, X.X. Yu, X.H. Zhang, C.S. Zhao C.S., et al., “In vitro study on the influence of strontium-doped calcium polyphosphate on the angiogenesis-related behaviors of HUVECs”, Journal of Material Science: Materials in Medicine, 19 (2008) 2655–2662.
  • [17] E. Seeman, J.P. Devogelaer, R. Lorenc, T. Spector, K. Brixen, A. Balogh, et al., Strontium ranelate reduces the risk of vertebral fractures in patients with osteopenia. Journal of Bone and Mineral Research, 23 (2008) 433-438.
  • [18] H. Wang, S. Zhao, J. Zhou, Y. Shen, W. Huang, C. Zhang, et al., Evaluation of borate BG scaffolds as a controlled delivery system for Cu ions in stimulating osteogenesis and angiogenesis in bone healing, Journal of Materials Chemistry B, 2 (2014) 8547-8557.
  • [19] M.M. Erol, V. Mouriňo, P. Newby, X. Chatzistavrou, J.A. Roether, L. Hupa, A.R. Boccaccini, Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering, Acta Biomaterialia, 8 (2012) 792–801.
  • [20] S.K. Misra, T.I. Ansari, S.P. Valappil, D. Mohn, S.E. Philip, W.J. Stark, I. Roy, J.C. Knowles, V. Salih, A.R. Boccaccini, Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Biomaterials, 31 (2010) 2806-2815.
  • [21] M. Erol, A. Özyuğuran, Ö. Özarpat S. Küçükbayrak, 3D Composite scaffolds using Strontium containing bioactive glasses, Journal of European Ceramic Society, 32 (2012) 2747–2755.
  • [22] T. Kokubo, Z.T. Huang, T. Hayashi, S. Sakka, T. Kitsugi, and T. Yamamuro, “Ca, P-rich layer formed on high-strength bioactive glass-ceramic”, J. Biomed. Mater. Res., 24 (3) 331–343 (1990).
  • [23] T. Oliveira, G. Botelho, N.M. Alves, J.F. Mano, Inclusion complexes of α-cyclodextrins with poly(D,L -lactic acid): structural, characterization, and glass transition Dynamics. Colloid and Polymer Science, 292 (2014) 863–871.
  • [24] R.V. Pereiraa, G.V., Salmoriab, M.O.C. Mouraa, Á. Aragonesc, M.C. Fredela, Scaffolds of PDLLA/Bioglass 58S Produced via Selective Laser Sintering. Materials Research, 17 : 1 (2014) 33-38.
  • [25] A.I. Leal, S.G. Caridade, J. Ma, N. Yu, M.E. Gomes, R.L. Reis, J.A. Jansen, X.F. Walboomers, J.F. Mano, Asymmetric PDLLA membranes containing Bioglass® for guided tissue regeneration: Characterization and in vitro biological behavior. Dental Materials, 29 (2013) 427–436.
  • [26] C.S. Proikakis, N.J. Mamouzelos, P.A. Tarantili, A.G. Andreopoulos, Stability of DL-poly(lactic acid) in aqueous solutions. Journal of Applied Polymeric Science, 87 : 5 (2003) 795-804.
  • [27] M. Catauro, F. Bollino, R.A. Renella, F. Papale, Sol–gel synthesis of SiO2–CaO–P2O5 glasses: Influence of the heat treatment on their bioactivity and biocompatibility. Ceramics International, 41 (2015) 12578–12588.
  • [28] H. Hajiali, S. Karbasi, M. Hosseinalipour, H.R. Rezaie, Preparation of a novel biodegradable nanocomposite scaffold based on poly (3-ydroxybutyrate)/bioglass nanoparticles for bone tissue engineering. Journal of Material Science: Materials in Medicine, 21 (2010) 2125–2132.
  • [29] M. Akram, A.Z. Alshemary, Y.F. Goh, W.A.W. Ibrahim, H.O. Lintang, R. Hussain, Continuous microwave flow synthesis of mesoporous hydroxyapatite. Material Science of Engineering C, 56 (2015) 356–362.
  • [30] A.Z. Alshemary, M. Akram, Y.F. Goh, M.R.A. Kadir, A. Abdolahi, R. Hussain, Structural characterization, optical properties and in vitro bioactivity of mesoporous erbium-doped hydroxyapatite. Journal of Alloys Compounds, 645 (2015) 478–486.
  • [31] J.L. Ryszkowska, M. Auguścik, A. Sheikh, A.R. Boccaccini, Biodegradable polyurethane composite scaffolds containing Bioglass for bone tissue engineering. Composites Science and Technology, 70 (2010) 1894–1908.
  • [32] Y. Wan, C. Wu, G. Xiong, G., Zuo, J. Jin, K. Ren, Y. Zhu, Z. Wang, H. Luo, Mechanical properties and cytotoxicity of nanoplate-like hydroxyapatite/polylactide nanocomposites prepared by intercalation technique. Journal of Mechanical Behavior of Biomedical Materials, 47 (2015) 29–37.
  • [33] A.M. Sofronia, R. Baies, E.M. Anghel, C.A. Marinescu, S. Tanasescu, Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite. Material Science of Engineering C, 43 (2014) 153–163.
  • [34] C. Gerard, L.J. Bordeleau, J. Barralet, C.J. Doillon, The stimulation of angiogenesis an collagen deposition by copper. Biomaterials, 31 (2010) 824–831.
  • [35] C. Stӓhli, N. Muja, S.N. Nazhat, Controlled copper ion release from phosphate-based glasses improves human umbilical vein endothelial cell survival in a reduced nutrient environment. Tissue Engineering Part A, 19 (2013) 548–557.
  • [36] C.K. Sen, S. Khanna, M. Venojarvi, P. Trikha, E.C. Ellison, T.K. Hunt S. Roy, Copper-induced vascular endothelial growth factor expression and wound healing. American Journal of Physiology: Heart and Circulatory Physiology, 282 (2002) H1821–H1827.
  • [37] C. Wu, Y. Zhou, C. Lin, J. Chang, Y. Xiao, Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering. Acta Biomateriala, 8 (2012) 3805–3815.