Mıknatıslanmış Granül Dolgulu Yataklarda Submikron Parçacıklarının Yakalanması

Dış homojenik manyetik alanda mıknatıslanmış ve teğetleşmiş ferromanyetik kürelerin oluşturduğu gradyantlı manyetik alanda mikron ve submikron boyutlu parçacıkların difüzyon separasyonu olayı teorik olarak incelenmiştir. Mıknatıslanmış kürelerin teğet noktaları etrafında oluşan gradyantlı alanda submikron boyutlu parçacığa etkiyen manyetik kuvvet ifadesinden gidilerek difüzyon denkleminin kararlı durumlar için analitik çözümü elde edilmiş ve parçacıkların bu bölgelerdeki konsantrasyon dağılımı belirlenmiştir. Sistemin manyetik, hidrodinamik, ısı ve geometrik parametreleri dikkate alınarak difüzyon olunan parçacıkların kritik boyutlarını değerlendirmek için analitik formül geliştirilmiştir. Elde edilen sonuçlara göre dış manyetik alanın artmasıyla parçacıkların kritik boyutlarının azaldığı gözlenmiştir. Bu düşüşün parçacıkların tek domenli yapısına kadar olabileceği vurgulanmıştır. Analitik hesaplamalara göre parçacıkların kritik boyutlarının kürelerin boyutlarından bağımsız olduğu görülmüştür. Ancak ferromanyetik kürelerin oluşturduğu gradyantlı manyetik alanda oluşan difüzyon olaylarında parçacıkların kritik boyutlarının matris elemanları olan kürelerin boyutlarından bağımsız olduğu sonucunun tartışılabilir olduğu söylenmiştir. 

___

  • [1] V. V. Karmazin,V. I. Karmazin, Magnetic methods of beneficiation. Moscow: Nedra, 1987.
  • [2] J. Svoboda, Magnetic Techniques for the Treatment of Materials. Dordrecht: Kluver Academic, 2004.
  • [3] R. Gerber, R. . Birss, High gradient magnetic separation. New York, Research Studies Press, 1983.
  • [4] Bean C.P. Theory of magnetic filtration. Bull. Am. Phys. Soc. 16, (1971) 350-355.
  • [5] J. H. P. Watson, Magnetic filtration, J. Appl. Phys., 44: 9, (1973) 4209–4213.
  • [6] J. A. Obertteuffer, Magnetic separation: a review of principles, devices and applications IEEE Trans. Magn. 10: 2, (1974), 223-238.
  • [7] F. J. Friedlaender, M. Takayasu, A study of the mechanism of particle build-up on single ferromagnetic wires and spheres. IEEE Trans. Magn. Mag: 18, (1982) 817-819.
  • [8] C. De Latour, Magnetic Separation in. Water Pollution Control, IEEE Trans. Magn., 3: MAG 9, (1973) 314–316.
  • [9] J. Hristov, Magnetic field assisted fluidization - a unified approach. Part 9. Mechanical processing with emphasis on separations, Rev. Chem. Eng., 28:4–6, (2012) 243–308.
  • [10] E. J. Furlani, E. P. Furlani, A model for predicting magnetic targeting of multifunctional particles in the microvasculature, J. Magn. Magn. Mater., 312: 1, (2007) 87–193.
  • [11] X. Zheng, Z. Xue, Y. Wang, G. Zhu, D. Lu, X. Li, Modeling of particle capture in high gradient magnetic separation: A review, 352, (2019) 159-169.
  • [12] C. T. Yavuz, A. Prakash, J. T. Mayo, V.L. Golvin, magnetic separations:From still plants to biotechnology,Chemical Engineering Science, 64: 10, (2009) 2510-2521.
  • [13] F. Friedlaender, M. Takayasu, A study of the mechanisms of particle buildup on single ferromagnetic wires and spheres, IEEE Trans. Magn., 18: 3, (1982) 817–821.[14] R. Gerber Theory of particle capture in axial filters for high gradient magnetic separation, J. Phys, Appl. Phys., 11, (1978) 2119-2129.
  • [15] T. Abbasov, S. Herdem, M. Köksal, Particle capture in axial magnetic filters with power law flow model. J. Phys. D: Appl. Phys. 32, (1999) 1097-1103.
  • [16] X. Zheng, Y. Wang, D. Lu, X. Li, Theoretical and experimental study on elliptic matrices in the transversalhigh gradient magnetic separation, Minerals Engineering, 111, (2017) 68-78.
  • [17] X. Zheng, Y. Wang, D. Lu, X. Li, S. Li, H. Chu, Comparative study on the performance of circular and elliptic cross-sectionmatrices in axial high gradient magnetic separation: Role of the appliedmagnetic induction, Minerals Engineering, 110, (2017) 12-19.
  • [18] Y. Wang, D. Gao, X. Zheng, D. Lu, X. Li, Rapid determination of the magnetization state of elliptic cross-sectionmatrices for high gradient magnetic separation, Powder Technology, 339, (2018) 139-148.
  • [19] Y. Wang, Z. Xue, X. Zheng, D. Lu, X. Li, H. Chu, Study on favorable matrix aspect ratio for maximum particle capture in axial high gradient magnetic separation, Minerals Engineering 135, (2019) 48-54.
  • [20] Z. Kheshti, S. Hassanajili, K. Azodi Ghajar, Study and Optimization of a High-Gradient Magnetic Separator Using Flat and Lattice Plates, IEEE Transactions on Magnetics 55:2, (2019) 1-8.
  • [21] N. Rezlescu, V. Murariu, O. Rotariu, V. Badescu, Capture modelling for an axial high gradient magnetic separation filter with a bounded flow model, Powder Technol., 83, (1995), 259-264.
  • [22] V. Badescu, O. Rotariu, V. Murariu, N. Rezlescu, Magnetic capture modelling for a transversal high gradient filter cell with bounded flow field, Int. J. Appl. Electrom. Mech., 7, (1996) 57-67.
  • [23] M. Takayasu, R. Gerber, F. J. Friedlaender, Magnetic separation of submicron particles, IEEE Trans. Magn., 19:5, (1983) 2112-2114.
  • [24] R. Gerber, Magnetic filtration of ultra-fine particles, IEEE Trans. Magn., MAG-20:5, (1984) 1159-1164.
  • [25] R. Gerber, M. Takayasu, F. J. Friedlaender, Generalization of HGMS theory: The capture of ultra-fine particles, IEEE Trans. Magn. 19: 5, (1983) 2115-2117.
  • [26] D. Fletcher, Fine Particle High Gradient Magnetic Entrapment, IEEE Trans. Magn., 27: 4, (1991) 3655-3677.
  • [27] E. Blums, A. Yu. Chuckrov, Separation processes in polydisperse magnetic fluids, Journal of Magnetism and Magnetic Materials, 122, (1993) 110-114.
  • [28] E. Blums, A. Yu. Chuckrov, Some problems of mass transfer in magnetic colloids, Journal of Magnetism and Magnetic Materials, 85, (1990) 210-215.
  • [29] E. Blums, J. Plavins, A. Chukhrov, High-gradient magnetic separation of magnetic colloids and suspensions, Journal of Magnetism and Magnetic Materials 39, (1983) 147-151.
  • [30] K. Hournkumnuard, M. Natenapit, Diffusive capture of magnetic particles by an assemblage of random cylindrical collectors, Sep. Sci. Technol. 43, (2008) 3448–3460.
  • [31] T. Abbasov, M. Koksal, S. Herdem, Theory of High-Gradient Magnetic Filter Performance, IEEE Transactions On Magnetics, 35:4, (1999) 2128-2132.
  • [32] Polygradient magnetic separators, by Ed. N. F. Measnikov, Moscow: Nedra, 1973.
  • [33] A. Safonyk, A. Bomba, Mathematical modeling process of liquid filtration taking into account reverse influence of process characteristics on medium haracteristics, Int. J. Appl. Math. Res., 4:1 (2015) 1-7
  • [34] C. Magnet, M. Akouala, P. Kuzhir, G. Bossis, A. Zubarev, N. M. Wereley, Closed-loop magnetic separation of nanoparticles on a packed bed of spheres, J. Appl. Phys., 117:17, (2015) 117-119
  • [35] M. F. Haque, S. Arajs, C. Moyer, Experimental studies in magnetic separation of ultrafine hematite, IEEE Trans. Magn., 24:6, (1988) 2413–2415.
  • [36] C. Moyer, M. Natenapit, S. Arajs, Filtration of submicron particles by spheres in HGMS, J. Magn. Magn. Mater., 61:3, (1986) 271–277.
  • [37] Y. I. Akoto, Mathematical modelling of high-gradient magnetic separation devices, IEEE Trans. Magn. 13: 5, (1977), 1486-1489.
  • [38] J. H. P. Watson, Approcximate solutions of the magnetic separator equations. IEEE Trans. Magn. 14: 4, (1978), 240-245.
  • [39] N. Fuchs, Z. Physik, Über die Stabilität und Aufladung der Aerosole, Zeitschrift für Physik, 89, (1934) 736-743.
  • [40] T. Abbasov, K. Ceylan, Filter Performance and Velocity Distribution Relation in Magnetic Filtration of Non-Newtonian Liquids, Separation Science and Technology 33: 7, (1998) 2177-2189.
  • [41] T. Abbasov, A. Sarimeseli Altunbas, Determination of the particle capture radius in magnetic filters with velocity distribution profile in pores, Separation Science and Technology 37: 9, (2002) 2037-2053.
  • [42] T. Abbasov, Elektromanyetik Filtreleme İşlemleri Teori, Uygulama ve Konstrüksiyon, Şeçkin, Ankara, 2002.
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Gazi Üniversitesi , Fen Bilimleri Enstitüsü
Sayıdaki Diğer Makaleler

UVDGM Tabanlı AYK Yöntemiyle Fırçasız Doğru Akım Motorunun Konum Kontrolü

Süleyman KOKUNDU, M. Timur AYDEMİR

Hekzan ve N-Heptan Yakıt Karışımları ile Çalışan Homojen Dolgulu Sıkıştırma İle Ateşlemeli (HCCI) Bir Motorda Hava Fazlalık Katsayısının Yanma ve Motor Performansı Üzerindeki Etkileri

Emre YILMAZ

Dermoskopik Görüntülerde Lezyon Bölütleme İşlemlerinde K-ortalama Kümeleme Algoritmasının Kullanımı

Oktay AYTAR, Sümeyya İLKİN, Tuğrul Hakan GENÇTÜRK, Suhap ŞAHİN

Bulanık VIKOR ile Personel Seçimi: Otomotiv Yan Sanayiinde Uygulama

Fatih ÖZTÜRK, Gülsüm Kübra KAYA

Kuvars İvmeölçer Kapalı Döngü Analog Okuma Devresi

M. Timur AYDEMİR, M. Oğuz GÜNBAZ

İç İçe Borulu Yay Tip Türbülatörlü Bir Isı Değiştiricisinin RNG k-ε Türbülans Modeli ile Sayısal Analizi

Ali Rıza DAL, Hacı Mehmet ŞAHİN, Medine ÖZKAYA

BULANIK VIKOR İLE PERSONEL SEÇİMİ: OTOMOTİV YAN SANAYİNDE UYGULAMA

Fatih ÖZTÜRK, Gülsüm Kübra KAYA

Tavlama İşleminin Al 2024-T3 Sac Malzemesinin Şekillendirilebilirliğine ve Mikroyapıya Etkilerinin Deneysel Araştırılması

İbrahim KARAAĞAÇ, Mehmet Okan KABAKÇI, Mehmet Yasin DEMİREL

T/M Yöntemi ile Üretilen Al Alaşımlarında Zn, Cu ve Mg Elementlerinin, Yaşlanma, Mikroyapı ve Sertliğe Etkileri

Hakan ADA, Yavuz KAPLAN, Sinan AKSÖZ, Emre İNCE, Serkan ÖZSOY

Bakır ve Silisyum İlavelerinin Al-25Zn Alaşımının CVD Al2O3 Kaplamalı Takımlarla Tornalanmasında İşlenebilirliğe Etkisinin İncelenmesi

Şenol BAYRAKTAR, Çiğdem ÇAMKERTEN, Nurten SALİHOĞLU