Manyetik Rezonansa Dayalı Kablosuz Güç Transferi İçin Yeni Bir Nüve Geometrisi

Kablosuz Güç Transferi (KGT) uygulamalarında en önemli hedef, verimli bir enerji transferi sağlamaktır. KGT günümüzde cep telefonu şarjı, elektrikli araç şarjı, aydınlatma, kontrol vb. birçok alanda uygulanmaktadır. Yüksek verimi, çevresel olumsuz etkilerinin az olması gibi avantajlarından dolayı, manyetik rezonans yöntemi kısa hava aralıklı mesafelerde KGT için en çok tercih edilen yöntemdir. Manyetik rezonansa dayalı KGT sistemlerinde, sistem verimini artırmak için yüksek verimli bir KGT transformatörü kullanılmalıdır. Bu çalışmada manyetik rezonansa dayalı bir KGT sisteminin tasarımı yapılmıştır. Bu amaçla öncelikle hibrit (hava-ferrit) nüveli özgün bir transformatör tasarlanmıştır. Transformatörün Dairesel-Dilimli Parçalı(D-DP) ferrit nüve yapısı ilk defa bu çalışmada kullanılmıştır. Transformatörün sargıları litz iletken olarak tasarlanmıştır. Transformatörde kaçak akıları en aza indirmek amacıyla sargıların dış yüzeylerine alüminyum levhalar kullanılarak manyetik akı sargılar arasında kalmaya zorlanmıştır. Tasarlanan transformatörün sonlu elemanlar yöntemi ile manyetik analizleri yapılmış ve sonuçları nümerik hesaplarla doğrulanmıştır. Manyetik analiz sonuçları kullanılarak, KGT transformatörü benzetim devresi üzerinden yüklenmiş ve 5 cm’lik bir hava aralığında % 97 verim ile güç transferi gerçekleştirilmiştir. Elde edilen sonuçlar D-DP ferrit nüve yapısının KGT transformatörü uygulamalarında başarı ile kullanılabileceğini göstermiştir.

A New Core Geometry for Wireless Power Transfer Based on Magnetic Resonance

The most important goal in Wireless Power Transfer (WPT) applications is to provide efficient energy transfer. WPT is applicable at mobile phone charging, electric vehicle charging, lighting, control etc. Due to its high efficiency and low environmental impact, magnetic resonance is the most preferred method for short-range distances. In WPT systems based on magnetic resonance, a high efficiency WPT transformer should be used to increase system efficiency. In this study, a WPT system based on magnetic resonance is designed. For this purpose, firstly, a transformer with air-ferrite hybrid core is designed. The transformer's circular-sliced segmented (C-SS) ferrite core structure was used for the first time in this study. The transformer windings are designed as litz conductors. In order to minimize leakage fluxes in the transformer, the magnetic field was forced to stay between the windings by using aluminum plates on the outer surfaces of the windings. Magnetic analysis of the designed transformer was made with finite element method and the results were confirmed by numerical calculations. Using the magnetic analysis results, the WPT transformer was loaded over the simulation circuit and power transfer was achieved in a 5 cm air gap with 97% efficiency. The results showed that C-SS ferrite core structure can be used successfully in WPT transformer applications.

___

  • [1] E. Aydın, A. Pashei, E. Yıldırız, M. T. Aydemir, “Manyetik Rezonanslı Kuplaj ile Kablosuz Enerji Transferinde Hizalanmış ve Hizalanmamış Durumların Limitlerinin İncelenmesi,” Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 3, pp.1-6, 2018.
  • [2] A. Pashei, E. Aydın, M. Polat, E. Yıldırız, M. T. Aydemir, “Elektrikli Araçlar için Temassız Güç Aktarım Sistemleri,” EMO Bilimsel Dergi, vol. 6, no 11, pp. 1-12, 2016.
  • [3] J. Shin, S. Shin,Y. Kim,S. Ahn,S. Lee, G. Jung, S.-J. Jeon,D.-H. Cho, “Design and Implementation of Shaped Magnetic-Resonance-Based Wireless Power Transfer System for Roadway-Powered Moving Electric Vehicles,” IEEE Transactions on Industrial Electronics, vol. 61, no. 3, pp. 1179-1192, 2013.
  • [4] T. Imura, Y. Hori, “Maximizing Air Gap and Efficiency of Magnetic Resonant Coupling for Wireless Power Transfer Using Equivalent Circuit and Neumann Formula,” IEEE Transactions on Industrial Electronics, vol. 58, no. 10, pp.4746-4752, 2011.
  • [5] H. Takanashi, Y. Sato, Y. Kaneko, S. Abe, T. Yasuda, “A large air gap 3 kW wireless power transfer system for electric vehicles,” 2012 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 269-274, 2012,
  • [6] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, no. 5834, pp. 83–86, 2007.
  • [7] M. Cederlöf. “Inductive Charging of Electrical Vehicles,” Stockholm: KTH, School of Electrical Engineering (EES), Electromagnetic Engineering”, Master Thesis, 2012.
  • [8] A. Karalis, J.D. Joannopoulos, M Soljacic, “Efficient wireless non-radiative mid-range energy transfer,” Annals of Physics, vol. 323, no. 1,pp. 34–48, 2008.
  • [9] A. L. Máñez. “Optimization of Inductive Resonanat Coupling Links for low Power and Mid-Range Wireless Power Transfer”, Master Thesis, 2014.
  • [10] A. Ağçal, N. Bekiroğlu, S. Özçıra, ”Manyetik Rezonanslı Kuplaj ile Kablosuz Enerji Transferinde Hizalanmış ve Hizalanmamış Durumların Limitlerinin İncelenmesi,” Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 3, pp. 67-73, 2018.
  • [11] R. Zhang, C. K. Ho, “MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer,” IEEE Transactions on Wireless Communications, vol. 12, no. 5, pp. 1989-2001, 2013.
  • [12] J. M. Miller, O. C. Onar, M. Chinthavali, “Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 147-162, 2014.
  • [13] K. Aditya, S. S. Williamson, “Design Guidelines to Avoid Bifurcation in a Series–Series Compensated Inductive Power Transfer System,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3973-3982, 2018.
  • [14] S. Ludvik, P. Mojca, B. V. Boštjan, “Optimization, design, and modeling of ferrite core geometry for inductive wireless power transfer,” International Journal of Applied Electromagnetics and Mechanics, vol. 49, no. 1, pp. 145-155, 2015.
  • [15] T. Diekhans , R. W. De Doncker, “A Dual-Side Controlled Inductive Power Transfer System Optimized for Large Coupling Factor Variations and Partial Load,” IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6320-6328, 2015.
  • [16] C. Panchal, S. Stegen, J. Lu, “Review of static and dynamic wireless electric vehicle charging system,” Engineering Science and Technology, an International Journal, vol. 21, no. 5, pp. 922-937, 2018.
  • [17] B. Fincan, Ö. Üstün, “A study on comparing analytical methods for coil design in high frequency wireless energy transfer,” 2015 IEEE PELS Workshop on Emerging Technologies: Wireless Power (2015 WoW), Daejeon, South Korea: IEEE. 2015.
  • [18] Y.Tezcan, H. Ünal, T. Sürgevil, M. Boztepe, “Optimum Coil Design Considering Skin and Proximity Effects for a Wireless Battery Charger of Electric Vehicle,” 2017 World Electro Mobility Conference, 2017.
  • [19] A. P. Sample, D. T. Meyer, J. R. Smith, “Analysis, Experimental Results, and Range Adaptation of Magnetically Coupled Resonators for Wireless Power Transfer,” IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 544-554, 2010.
  • [20] T. Imura, “Study on maximum air-gap and efficiency of Magnetic Resonant Coupling for Wireless Power Transfer using Equivalent Circuit,” 2010 IEEE International Symposium on Industrial Electronics, Bari, Italy, 2010.
  • [21] G. Buja, M. Bertoluzzo, and K. N. Mude, “Design and Experimentation of WPT Charger for Electric City Car,” IEEE Transactions on Industrial Electronics, vol. 62, no. 12, pp. 7436-7447, 2015.
  • [22] S. Samanta, R. A. Kumar, “Small-Signal Modeling and Closed-Loop Control of a Parallel– Series/Series Resonant Converter for Wireless Inductive Power Transfer,” IEEE Transactions on Industrial Electronics, vol. 66, no. 1, pp. 172-182, 2018.
  • [23] O. Kaplan “Kablosuz Güç Aktarımı İçin Karşılıklı Endüktans Hesaplama Aracının Geliştirilmesi,” Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, vol. 7, no. 1, pp. 37–48, 2019.
  • [24] J. Barranger, “Hysteresis and Eddy-Current Losses of a Transformer lamination Vieved as an application of the poynting Theorem,” NASA Technical Note, Cleveland, Ohio, 1965.
  • [25] M. Budhia, G. A. Covic, J. T. Boys, “Design and Optimization of Circular Magnetic Structures for Lumped Inductive Power Transfer Systems,” IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3096 – 3108, 2011.
  • [26] K. Ogawa, N. Oodachi, S. Obayashi, H. Shoki, “A study of efficiency improvement of wireless power transfer by impedance matching,” 2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, Kyoto, Japan, 2012.
  • [27] S. Y. Choi, B. W. Gu, S. Y. Jeong, C. T. Rim, “Advances in Wireless Power Transfer Systems for Roadway-Powered Electric Vehicles,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 18-36, 2014.
  • [28] S. Li, C. C. Mi, “Wireless Power Transfer for Electric Vehicle Applications,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 4-17, 2014.
  • [29] O. C. Onar, J. M. Miller, S. L. Campbell, C. Coomer, C. P. White, L. E. Seiber, “Oak Ridge National Laboratory Wireless Power Transfer Development for Sustainable Campus Initiative,” 2013 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 2013.
  • [30] H. H.Wu, A. Gilchrist, K. D. Sealy, D. Bronson, “A High Efficiency 5 kW Inductive Charger for EVs Using Dual Side Control,” IEEE Transactions on Industrial Informatics, vol. 8, no.3, pp. 585-595, 2012.
  • [31] A. J. Moradewicz, M. P. Kazmierkowski, “Contactless Energy Transfer System With FPGAControlled Resonant Converter,” IEEE Transactions on Industrial Electronics, vol. 57, no.9, pp. 31813190, 2010.
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Gazi Üniversitesi , Fen Bilimleri Enstitüsü