İki Hücreli PEM Yakıt Pili Yığının Sayısal Analizi

İnsanoğlunun enerji ihtiyacının büyük bir kısmını karşılayan petrol, doğalgaz gibi fosil enerji kaynaklarının gün geçtikçe azalmakta ve enerji üretiminde kullanılan kaynakların çevreye verdiği zararın giderek artması bilim adamlarını alternatif enerji kaynaklarına yönlendirmektedir. Bu alternatif enerji kaynaklarından biri olan yakıt pili uygulaması dikkatleri üzerine çekmektedir. Bu çalışmada iki hücreli bir PEM yakıt pili yığının analizi sayısal olarak yapılmıştır. Çalışmada her biri 5.4 cm2’lik aktif alana sahip iki PEM yakıt hücresi seri olarak bağlanarak yığın haline getirilmiştir. Anot ve katot bölümlerindeki reaktantların akış yönü paralel olarak tercih edilmiştir. Analiz edilen PEM yakıt pilinin çalışma koşulları ise 70oC ve 1 atm olarak belirlenmiştir. Bu tasarlanan yığından elde edilen güç değerleri hesaplanarak çalışmada sunulmuştur. Tek hücreli yakıt pili ve iki hücreli yığından elde edilen elektriksel güç değerleri grafikler halinde gösterilmiştir. 

___

  • 1. Dyer, C.K.,2002. Fuel cells for portable applications. J. Power Sources 106,31-40
  • 2. M. Elsayed Youssefa, R. S. Aminb, K.M. El-Khatibb, aComputer Based Engineering Applications Dept., Informatics Research Institute, City of Scientific Research and Technology Applications, New Borg El-Arab 21934, Alexandria, Egypt.b Chem. Eng. & Pilot Plant Dept., National Research Center, Dokki, Giza, Egypt.
  • 3. Review of bipolarplatesinPEMfuelcells:Flow-fielddesigns Xianguo Li∗, Imran Sabir Department of Mechanical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada,2004
  • 4. Hontanon E. et al. Optimisation of flow field in PEM fuel cell using CFD techniques. J Power Sources 2000;86:363–8.
  • 5. Sala, P., Stampino, P.G., and Dotelli G. (2014). Design Approach for the Development of the Flow Field of Bipolar Plates for a PEMFC Stack Prototype. Journal of Fuel Cell Science and Technology, 11, 1-7.
  • 6. Wu, H. (2009). Mathematical Modeling of Transient Transport Phenomena in PEM Fuel Cells. Doktora Tezi, University of Waterloo, Canada, 3-6.
  • 7. Hoogers, G. (2003). Fuel Cell Technology Handbook. Boca Raton: CRC Press.
  • 8. Barbir, F. (2005). Introduction. PEM Fuel Cells Theory and Practice, London: Elsevier Academic Press, 207-243.
  • 9. B.H. Lim, E.H. Majlan, W.R.W. Daud, M.I. Rosli, T. Husaini, (2019). “Three-dimensional study of stack on the performance of the proton exchange membrane fuel cell”, Energy, 169, 338-343.
  • 10. Wu, H. (2009). Mathematical Modeling of Transient Transport Phenomena in PEM Fuel Cells. Doktora Tezi, University of Waterloo, Canada, 3-6.
  • 11. Muhittin Bilgili, Magdalena Bosomoui, Georgius Tsotridis (2015). “Gas flow field with obstacle for PEM fuel cells at different operating conditions”. International Journal of Hydrogen Energy, 40(5) (2303-2311).
  • 12. Chen, L., Cao, T., Li, Z., He, Y., and Tao, W. (2012). Numerical İnvestigation of Liquid Water Distribution in The Cathode Side of Proton Exchange Membrane Fuel Cell and Its Effects on Cell Performance. International Journal of Hydrogen Energy, 37, 9155–9170.
  • 13. Limjeerajarus, N., and Charoen-amornkitt, P.(2015). Effect of Different Flow Field Designs and Number of Channels on Performance of A Small PEFC. International Journal of Hydrogen Energy, 40, 7144-7158.
  • 14. Zhang, J. (2008). PEM Fuel Cell Electrocatalyst And Catalyst Layers Fundementals and Applications, Canada: Springer, 1 -50.
  • 15. Hoogers, G. (2003). Fuel Cell Technology Handbook. Boca Raton: CRC Press.
  • 16. Demirtaş M., Akkoyun N., Akkoyun E., Çetinbaş İ, (2019). “Akıllı Şebekelerde Güneş Enerjisi Üretiminin Zamana Bağlı Olasılıksal Tahmini”, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, Cilt 7 , Sayı 2, 411 – 424.
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Gazi Üniversitesi , Fen Bilimleri Enstitüsü