KARE KESİT YAPAY PÜRÜZLÜ GÜNEŞ DESTEKLİ HAVA ISITICI TASARIMININ SAYISAL ANALİZİ

Güneş destekli hava ısıtıcıların çok yaygın kullanım ile birlikte ısı transferi verimlerinin düşük olduğu bilinmektedir. Bu konuda çeşitli çalışmalar yürütülmektedir. Yapılan bu çalışmada yutucu plaka üzerine kare kesit yapay pürüzlülük oluşturularak tasarlanan bir güneş destekli hava ısıtıcısının sayısal analizi yapılmıştır. Kütle, momentum ve enerji korunumu denklemlerinin sayısal simülasyonu, yaygın kullanılan hesaplamalı akışkanlar dinamiği yazılımı olan ANSYS Fluent ile sonlu hacimler metodunu kullanarak türbülanslı, zorlanmış konveksiyon ısı transferine maruz kalan tam gelişmiş akış için 2-boyutlu olarak yapılmıştır. Yutucu plaka üzerine 1000 W.m-2 sabit ısı akısı uygulanarak 4 farklı Reynolds sayısında (4000, 8000, 12000 ve 16000) ve 3 farklı pürüzlülük oranında (5,33, 10,67 ve 16,00) akış oluşturulmuştur. Reynolds sayısına bağlı olarak Nusselt sayısı, sürtünme faktörü değişimi ve akışkan çıkış sıcaklığı irdelenmiştir. Ayrıca, Reynolds sayısının ve pürüzlülük oranının ısı arttırma oranına etkisi incelenmiştir. Maksimum ısı arttırma oranı (Re=800 ve P/e=16’de) 1,20 olarak hesaplanmıştır. Yutucu plaka üzerinde yapay pürüzlülükler oluşturularak laminer alt tabakada türbülans sağlanması ile ısı transferinin arttırıldığı görülmüştür. Akışkan giriş ve çıkış sıcaklık farkı 4 K civarında bulunmuştur.

NUMERICAL ANALYSIS OF ARTIFICIALLY SQUARE SECTION ROUGHENED SOLAR AIR HEATER DESIGN

It is known that solar air heaters have low heat transfer efficiencies, with widespread use. Various studies are carried out on this subject. In this study, numerical analysis of a solar air heater designed by creating a square section artificial roughness on the absorber plate. Numerical simulation of the continuity, momentum and energy equations has been performed in 2-dimensional for fully developed flow subject to turbulent, forced convection heat transfer using the finite volume method with the widely used computational fluid dynamics software ANSYS Fluent. By applying a constant heat flux of 1000 W.m-2 on the absorber plate, flow was created at 4 different Reynolds numbers (4000, 8000, 12000 and 16000) and at 3 different roughness rates (5.33, 10.67 and 16.00). Depending on the Reynolds number, the Nusselt number, friction factor change and fluid outlet temperature were examined. In addition, the effect of Reynolds number and roughness ratio on the heat increase rate was investigated. The maximum thermal enhancement ratio (at Re=800 and P/e=16) was calculated as 1.20. By creating artificial roughness on the absorber plate, turbulence was provided in the sub-laminar layer and it was observed that the heat transfer was increased. The fluid inlet and outlet temperature difference were found to be around 4 K.

___

  • [1] S. P. Shetty, N. Madhwesh, and K. Vasudeva Karanth, “Numerical analysis of a solar air heater with circular perforated absorber plate,” Solar Energy, vol. 215, pp. 416–433, Feb. 2021, doi: 10.1016/j.solener.2020.12.053.
  • [2] R. Singh Gill, V. Singh Hans, and R. Pal Singh, “Optimization of artificial roughness parameters in a solar air heater duct roughened with hybrid ribs,” Applied Thermal Engineering, p. 116871, Mar. 2021, doi: 10.1016/j.applthermaleng.2021.116871.
  • [3] A. S. Yadav, V. Shrivastava, V. K. Chouksey, A. Sharma, S. K. Sharma, and M. K. Dwivedi, “Enhanced solar thermal air heater: A numerical investigation,” Materials Today: Proceedings, Apr. 2021, doi: 10.1016/j.matpr.2021.03.385.
  • [4] A. S. Yadav and J. L. Bhagoria, “A Numerical Investigation of Turbulent Flows through an Artificially Roughened Solar Air Heater,” Numerical Heat Transfer, Part A: Applications, vol. 65, no. 7, pp. 679–698, Jul. 2014, doi: 10.1080/10407782.2013.846187.
  • [5] A. S. Yadav and J. L. Bhagoria, “A numerical investigation of square sectioned transverse rib roughened solar air heater,” International Journal of Thermal Sciences, vol. 79, pp. 111–131, May 2014, doi: 10.1016/j.ijthermalsci.2014.01.008.
  • [6] Y. Mahanand and J. R. Senapati, “Thermo-hydraulic performance analysis of a solar air heater (SAH) with quarter-circular ribs on the absorber plate: A comparative study,” International Journal of Thermal Sciences, vol. 161, p. 106747, Mar. 2021, doi: 10.1016/j.ijthermalsci.2020.106747.
  • [7] B. Zina, A. Filali, N. Benamara, S. Laouedj, and H. Ahmed, “Numerical simulation of heat transfer improvement of a new designed artificially roughened solar air heater using triangular ribs with semi-circular nooks,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp. 1–17, Oct. 2020, doi: 10.1080/15567036.2020.1825564.
  • [8] D. Gupta, S. C. Solanki, and J. S. Saini, “Thermohydraueic performance of solar air heaters with roughened absorber plates,” Solar Energy, vol. 61, no. 1, pp. 33–42, Jul. 1997, doi: 10.1016/S0038-092X(97)00005-4.
  • [9] A. Standard, “ASHRAE 93 (2003) Method of testing to determine the thermal performance of solar collectors. American Society of Heating,” Refrigeration and Air Conditioning Engineers, Atlanta, GA, vol. 30329.
  • [10] P. J. Bezbaruah et al., “Thermo-hydraulic performance augmentation of solar air duct using modified forms of conical vortex generators,” Heat and Mass Transfer, vol. 55, pp. 1387–1403, 2019, doi: 10.1007/s00231-018-2521-1.
  • [11] A. S. Yadav and J. L. Bhagoria, “Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach,” Renewable and Sustainable Energy Reviews, vol. 23, pp. 60–79, Jul. 2013, doi: 10.1016/J.RSER.2013.02.035.
  • [12] I. Singh and S. Singh, “CFD analysis of solar air heater duct having square wave profiled transverse ribs as roughness elements,” Solar Energy, vol. 162, pp. 442–453, Mar. 2018, doi: 10.1016/j.solener.2018.01.019.
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Gazi Üniversitesi , Fen Bilimleri Enstitüsü