Bi(1,8- x)Pb0,2GaxSr2CaCu2Oy Süperiletken Yapıda Bi-Ga Kısmi Değişiminin Manyetik, Mekanik ve Mikroyapısal Özellikleri Üzerindeki Etkisinin İncelenmesi

BSCCO 2212 süperiletken sistemi, ekleme ve kısmi değiştirme yöntemlerine açık bir yapıya sahip olduğundan, birçok çalışma yapılmış ve makaleler yayınlanmıştır. Bu çalışmada, BSCCO 2212 süperiletkeninde belirli bir oranda Bi-Ga kısmi yer değişimi yapılarak Ga oranının arttırılması ile elde edilen numuneler üzerindeki duyarlılığın ölçülmesi ile Ga'nın süperiletken yapı üzerindeki etkisi araştırılmıştır. Her numunenin mekanik özelliklerini incelemek için Vickers mikro sertlik ölçümleri kullanılmıştır. Örneklerin yapısal özelliklerini belirlemek amacıyla x-ışını kırınım (XRD) analiz sonuçları değerlendirilmiş ve taramalı elektron mikroskobu (SEM) görüntüleri ile kristal yapı oluşumları gözlenmiştir.

The Investigation of Bi-Ga Partial Replacement Effect on Magnetic, Mechanical and Microstructural Properties of Bi(1,8- x)Pb0,2GaxSr2CaCu2Oy Superconductor

Since the BSCCO 2212 superconducting system has an open structure due to the addition and partial replacement methods, many studies have been carried out and the articles have been published. In this study, the effect of Ga on the superconductivity of the structure was investigated by measuring the susceptibility on the samples obtained by increasing the Ga ratio by performing Bi-Ga partial replacement at a certain ratio in the BSCCO 2212 superconductor. Vickers micro hardness measurements were used to examine the mechanical properties of each sample. x-ray diffraction (XRD) analysis results were evaluated in order to determine the structural properties of the samples and crystal structure formations were observed by scanning electron microscope (SEM) images.

___

  • 1. Bednorz, J. G., Müller, K. A.: Possible high Tc superconductivity in the Ba-La-Cu-O system. Condensed Matter. 64, 189-193 (1986)
  • 2. Maeda, H., Tanaka, Y., Fukutomi, M., Asano, T.: A new high-Tc oxide superconductor without a rare earth element. Jpn. J. Appl. Phys. 27(2), 209-210 (1988)
  • 3. Michel, C., Hervieu, M., Borel, M. M., Grandin, A., Deslands, F., Provost, J., Ravenau, B.: Superconductivity in the Bi-Sr-Cu-O system. Zeitschrift Physik B. (68), 421 (1987)
  • 4. Saritekin, N. K., Uzumcu, A. T.: Improving Superconductivity, Microstructure, and Mechanical Properties by Substituting Different Ionic Pb Elements to Bi and Ca Elements in Bi-2223 Superconductors. Journal of Superconductivity and Novel Magnetism (2022)
  • 5. Sedky, A., Salah, A.: Comparative Study of the Efects of La-Substituted Ca in (Bi, Pb):2212 and (Bi, Pb):2223 Superconductors. Journal of Electronic Materials (2022) 51:3042–3058 (2022)
  • 6. Ummarino, G. A.: Standard Behaviour of Bi2Sr2CaCu2O8+δ Overdoped. Condens. Matter 2021, 6, 13 (2021)
  • 7. Gayathri V., Santanu, B., Amaladass, E. P., Kumary, G. T., Pandian, R., Mani, A.: Effects of Pb assisted cation chemistry on the superconductivity of BSCCO thin films. Phys. Chem. Chem. Phys., 2021, 23, 12822–12833 (2021)
  • 8. Zhao, X., Wang, D., Wang, T., Hong, S., Jiang, L., Dai, Y., Qi, Y.: Preparation of Bi2Sr2CaCu2O8+d(Bi2212) superconductor by Pechini sol–gel method: thermal decomposition and phase formation kinetics of the precursors. J Mater Sci: Mater Electron (2020)
  • 9. Kır, E., Özkurt, B., Aytekin, M., The effect of K-Na Co-doping on the formation and particle size of Bi- 2212 phase Physica B. 490, 79–85 (2016)
  • 10. Asghari, R., Colakerol Arslan, L., Sedghi, H., Naghshara, H.: Synthesis and Characterization of Nb Substitution on (Bi-Pb)-2223 Superconductors. J Low Temp Phys.189:15–26 (2017)
  • 11. Asghari, R., Naghshara, H., Arsalan, L., Sedghi, H.: Comparing the Effects of Nb, Pb, Y, and La Replacement on the Structural, Electrical, and Magnetic Characteristics of Bi-Based Superconductors. Journal of Superconductivity and Novel Magnetism. 31:3889–3898 (2018)
  • 12. Boussouf, N.,· Mosbah, M. F.,· Kalkoul, N., · Benhamideche, C.: Effect of Zr Addition on Bi1.8Pb0.4Sr2.0Ca1.1Cu2.1Oy Superconductor. J Supercond. Nov. Magn. 30:365–370 (2017)
  • 13. Gül, E., Ozkurt, B., Aytekin, M. E., Ocakoğlu, K.: Structural, electrical and magnetic properties of Au doped Bi-2212 superconductors. Pamukkale Uni. Muh. Bilim Derg. 27(1), 70-77 (2021)
  • 14. Ozkurt, B.: Structural, Electric and Magnetic Properties of Bi2Sr2Ag0.03Ca1Cu2Oy Ceramics Modified by Post-annealing” Journal of Superconductivity and Novel Magnetism (2018) 31:2459–2464
  • 15. Khaled, J., Sato, R., Komatsu, T.: Effect of addition on the glass forming abiltiy and superconducting properties ob Bi-Sr-Ca-Cu-O System. Journal of the Ceramic Society of Japan. 105 [3], 265-268 (1997)
  • 16. Kazin, P. E., Poltavets, V. V., Poltavets, O. N., Kovalevsky, A. A., Tretyakov, Y.D., Jansen, M.: Formation of Bi-2212 phase and phase assemblage in Ga-doped BSCCO system. Physica C, 324, 30–38 (1999).
  • 17. Kannan, Y., Bansal, C., Rajaram, G. “Effect Of Ga203 Substıtutıon in Bi-2212 Superconductor” Solid State Communications. 81, 1, 109-113, 1992.
  • 18. Çavdar S., Bulut D.,İzmirli S., Turan N., Koralay H., GU J Sci, Part C, 10(1): 86-102(2022)
  • 19. Dongqi, L., Hui, Z., Xiang, G., Shengan, Y., Qingming, C.,: “Effect of the fabrication process on the electrical properties of polycrystalline Bi1.7Pb0.3Sr2Ca2Cu3O10. Ceramics International. 42 1728–1732 (2016)
  • 20. Bock, J., Bestgen, H., Elscbner, S., Preisler, E.:Large shaped parts of melt cast BSCCO for applications in electrical engineering. Transactions on applied superconductivity. 3-l (1993)
  • 21. Z. Ozhanli, E., Yakinci, M. E., Balci, Y., Aksan, M. A.: Crystallization activation energy and hole concentration properties of the Bi2Sr2CaxCdxCu2O8+y Glass-Ceramic Superconductor Rods. Journal of Superconductivity: Incorporating Novel Magnetism. 15, 6 (2002)
  • 22. Yanmaz, E., Harris, I. R., Abell, J. S.: Direct current zoning (DCZ) and direct current annealing (DCA) of melt-cast Bi-Pb-Sr-Ca-Cu-O rods. Journal of AUoys and Compounds. 185, 311-320 (1992)
  • 23. Tsukamoto, T., Inada, R., Inagaki, N., Andoh, H., Sugiura, T., Oota, .: Alternating-current transport losses of melt-cast processed Bi-2212 bulk superconductor bars. Supercond. Sci. Technol. 16 1246–1251 (2003)
  • 24. Dongqi, L., Hui, Z., Xiang, G., Shengan, Y., Qingming, C.: Effect of the fabrication process ontheelectricalpropertiesofpolycrystalline Bi1.7Pb0.3Sr2Ca2Cu3O10” Ceramics International42(2016)1728–1732
  • 25. Kayed, T. S., Calınlı, N., Aksu, E., Koralay, H., Günen, A., Ercan, İ., Aktürk, S., Çavdar, Ş.: Microstructural, thermal, and electrical properties of Bi1.7V0.3Sr2Ca2Cu3Ox glass-ceramic superconductor. Cryst. Res. Technol. 39, 12, 1063 – 1069 (2004)
  • 26. Hanjın, L., Byrne, J. G.: Effect of precursor history on synthesis of high-T BPSCCO superconductor Journal of Materials Science 31, 234.9-2352 (1996)
  • 27. Koralay, H., Çavdar, Ş., Arslan, A., Ozturk, O., Tasci, A.T., Tugluoglu, N.: Experimental and theoretical approaches for magnetic, superconducting and structural characterization of Bi1.75Pb0.25Sr2Ca2Cu3-xSnxO10+y glass ceramics. Cryogenics. 88 17–21(2017)
  • 28. Semenenkol, B., Camargo1, B. C., Setzer, A., ·Bohlmann, W., Kopelevich, Y., Esquinazi, P. D.: Magnetization of Bi2Sr2CaCu2O8+δ micrometer thin ring and ıts depinning line. Journal of Superconductivity and Novel Magnetism.33:2669–2678 (2020)
  • 29. Francesca, I.V.,· Hannah, B.,·Carlo, A., · Roland, S.: Effect of In2O3 on the grain connectivity and superconducting behavior of Bi2Sr2−xInxCaCu2O8+d. SN Applied Sciences 1:96 (2019)
  • 30. Ozturk, O., Asikuzun, E., Tasci, A.T., Gokcen, T., Ada, H., Koralay, H. Cavdar, S.: Comparison of Vickers microhardness of undoped and Ru doped BSCCO glass ceramic materials. Journal of Materials Science: Materials in Electronics 29:3957–3966 (2018)
  • 31. Ozturk, O., Gokcen, T., Cavdar, S., Koralay, H., Tasci, A. T.: A study on nucleation, crystallization kinetics, microstructure and mechanical properties of Ru–Bi partial substituted BSCCO glass ceramics. J Therm Anal Calorim 123:1073–1082 (2016)
  • 32. Awad, R., Abou-Aly, A.I., Kamal, M., Anas, M.: Mechanical properties of (Cu0.5Tl0.5)-1223. Supercond Nov Magn. 24:1947–56 (2011)
  • 33. Sangwal K.: On the reverse indentation size effect and microhardness measurement of solids. Mater Chem Phys. 63:145–52 (2000)
  • 34. Khalil, S. M.: Influence of isothermal hot pressing-doping treatment on the electrical and mechanical properties of bulk Bi-Sr-Ca-Cu-O” AIP Advances 2, 042183 (2012)
  • 35. Sangwal, K., Surowska, B.: Study of indentation size effect and microhardness of SrLaAlO4 and SrLaGaO4 single crystals. Materials Research Innovations, 7:2, 91-104 (2003)
  • 36. Hays, C., Kendall, E. G.: An Analysis of Knoop Microhardness. Metallography, 6, 275-282 ( 1973).
  • 37. Gane, N., Bowden, F. P.: Microdeformation of Solids. Journal of Applied Physics, 39, 1432-1435 (1968)
  • 38 Awad, R., Abou-Aly, A. I., Kamal, M., Anas, M.: Mechanical Properties of (Cu0.5Tl0.5)-1223 Substituted by Pr. J. Supercond. Nov. Magn., 24: 1947-1956 (2011).
  • 39. Li, H., R. Bradt, C.: The Microhardness indentation load/size effect in rutile and cassiterite single crystals. Journal of Materials Science, 28, 917-926 (1993)