Spark Plazma Yöntemiyle W-%25Re bileşiminin Sermet Yakıt Üretimi İçin Sinterlenmesi ve Özelliklerinin İncelenmesi

Bu çalışmada, sermet üretimi için %99,99 saflıkta ve 7,8 µm boyutundaki tungsten metal tozlarının Spark Plasma Sinterleme (SPS) yöntemi ile 1300oC ile 1700oC arasındaki sıcaklıklarda 5 dakika, 10 dakika, 20 dakika ve 30 dakikalık sürelerde sinterlenmiştir. Sinterlenen tungsten numunelerinin bağıl yoğunluklarının, tungsten teorik yoğunluğunun %83 ila %94'ü arasında değişen bağıl yoğunluklara sahip olduğu tespit edildi. Mikro sertlik (Vickers) deneyi ölçümlerinde, %94 bağıl yoğunluğu olan numunenin 298 kg/mm2 sertlik değerinde olduğu tespit edilmiştir. Sermet malzemenin mekanik özelliklerini geliştirmek amacıyla, %99,99 saflıkta ve 13,3 µm boyutlarındaki Renyum tozları ile %99,99 saflıkta ve 0,5 µm boyutlarında Tungsten tozları, ağırlıkça %75 Tungsten-%25 Renyum tozları iki farklı yöntemle düşük ve yüksek devirli değirmenler kullanılarak karıştırıldı. Yüksek devirli bilyeli değirmende hazırlanan tozların aynı sıcaklık ve basınç altında daha az yer değiştirme (%3) gösterdiği tespit edildi. W-25% Re tozları, 1700oC ve 1900oC sıcaklıklarda ve farklı sürelerde SPS yöntemi ile sinterlendi. En yüksek bağıl yoğunluk 1700oC’de %97,6 olarak elde edildi. Buna karşılık, en az yer değiştirme (%3,3) 1900 oC de 40 dakika süre ile sinterlenen numuneden elde edildi. Bu sonuçlar ışığında; SPS yönteminin sermet yakıt üretimi için tungsten-renyum alaşımlarının seri olarak üretilmesinde kullanılabilecek bir yöntem olacağı tespit edilmiştir.

Sintering and Properties of W-25% Re Composition for Sermet Fuel Production by Spark Plasma Method

In this study, the sintering of tungsten metal powders of 99.99% purity and 7.8 µm for cermet production by Spark Plasma Sintering (SPS) method at temperatures between 1300°C and 1700°C for 5 minutes, 10 minutes, 20 minutes and 30 minutes was investigated. The relative densities of the sintered tungsten samples were found to have relative densities ranging from 83% to 94% of the theoretical density of tungsten. Micro hardness (Vickers) test, 94% relative density of the sample was found to be 298 kg / mm2 hardness. In order to improve the mechanical properties of cermet material, 99.99% purity and 13.3 µm dimensions of Rhenium powders and 99.99% purity and 0.5 µm sizes of Tungsten powders, 75% by weight Tungsten-25% Rhenium powders are mixed using high-speed mills. It was found that the powders prepared in high speed ball mill showed less displacement (3%) under the same temperature and pressure. W-25% Re powders were sintered with SPS method at different temperatures and temperatures of 1700oC and 1900°C. The highest relative density at 1700°C was 97.6%. In contrast, the minimum displacement (3.3%) was obtained from the sintered sample for 40 minutes at 1900 °C. In the light of these results; It has been determined that SPS method can be used in series production of tungsten-rhenium alloys for cermet fuel production.

___

  • [1] Angelo, J. A., and Buden, D., (1985) Space Nuclear Power, Orbit Book Co., Malibar, Fl., ISBN13: 978-0894640001. [2] Hill, P., Peterson, C., (1992) Performance of Rocket Vehicles in Mechanics and Thermodynamics of Propulsion, Addison Wesley Publishing Co., Reading, MA., pp. 469-494.
  • [3] Hickman R., Panda B., Shah S., Fabrication of High Temperature Cermet Materials for Nuclear Thermal Propulsion, 53 nd JANNAF Propulsion Meeting/ld Spacecraft Propulsion Subcommittee Meeting, Monterey CA, (December 2005)
  • [4] Mason L., et. al., Fission Surface Power System Initial Concept Definition, National Aeronautics and Space Administration, NASA/TM-2010-216772, pp. 18, (2010). https://ntrs.nasa.gov/search.jsp?R=20110007114 2019-07-12T00:55:59+00:00Z
  • [5] Lyon, L. L., Performance of (U, Zr) C-Graphite (Composite) and of (U,Zr) C (Carbide) Fuel Elements in the Nuclear Furnace 1 Test Reactor, Los Alamos National Laboratory, LA-5398-MS, (1973). DOI: 10.2172/4419566
  • [6] Angelo, J. A., and Buden, D., “Uranium-Ziconium-Hydride Reactor Power Plants”, in Space Nuclear Power, Orbit Book Co., Malibar, FL., (159-175), (1985).
  • [7] Bhattacharyya, S. K., An Assessment of Fuels for Nuclear Thermal Propulsion, Argonne National Laboratory, ANL/TD/TM01-22, (50-68), (2001).
  • [8] Burkes, D. E., Wachs, D. M., Werner, J. E., Howe, S. D., An Overview of Current and Past WUO2 CERMET Fuel Fabrication Technology, Idaho National Laboratory, INL/CON-07-12232, (2007).
  • [9] Sawyer, J. C., and Philleo C. H., Generation of Long Time Creep Data of Refractory Alloys at Elevated Temperatures, National Aeronautics and Space Administration, NASA CR-54228, pp. 8 (1964).
  • [10] Zee. R. H., and Rose, F. M., High Temperature Materials Technology Research for Advanced Thermionic Systems, U.S. Department of Energy, DOE/SF/19645-T12, pp. 17-32, (1998).
  • [11] Lundberg, L. B., and Hobbins, R. R., Nuclear Fuels for Very High Temperature Applications, Idaho National Engineering Laboratory, EGG-M-92067, pp. 2, (1992).
  • [12] Marlowe, M.O., and Kaznoff, A. I., Development of a Low Thermal Expansion Tungsten-UO2 CERMET Fuel, National Aeronautics and Space Administration, NASA CR-72711, (1970).
  • [13] Baker, R. J., et.al., Basic Behavior and Properties of W-UO2 CERMETS, National Aeronautics and Space Administration, NASA-CR-54840, 1965 13Klopp, W. D., Review of Group VIA Elements by Rhenium And Other Solutes, National Aeronautics and Space Administration, NASA TN D-4955, pp. 3-12, (1968).
  • [14] Homan F. J., Napier, J. M., Caldwell, C. S., “Particle Fuels Technology for Nuclear Thermal Propulsion” AIAA/NASA/OAI Conference on Advanced SEI Technologies, Cleveland, OH, A M 91 -3457, (Sept. 1991).
  • [15] Takkunen, P. D., Fabrication of Cermets of Uranium Nitride and Tungsten or Molybdenum from Mixed Powders and from Coated Particles, NASA Report TN D-5 136, (April-1969).
  • [16] Anghaie, Samim, Harris, P. “Evaluation of Cermet Fuels Test Data”, Proceedings of the International Conference on Advances in Nuclear Power Plants (ICAPP), Pittsburgh, PA, pp 22402248, (June 13 -17, 2004).
  • [17] ASM Speciality Handbook (2004): Heat-Resistant Materials, ASM International The Materials Information Society, Ohio.
  • [18] Garfinkle, M., Witzke, W. R., and Klopp, W. D., Superplasticity in Tungsten-Renium Alloys, Lewis Research Center-NASA, Cleveland, OH, (1968).
  • [19] Tokita, M. Mechanism of spark plasma sintering, Sumitomo Coal Mining Company, Ltd., Kanagawa 213, Japan.
  • [20] Orrù, R., Licheri, R., Locci, A.M., Cincotti, A., Cao, G. Consolidation/synthesis of materials by electric current activated/assisted sintering, Materials Science and Engineering: R: Reports, 63(4-6), (127-287), (2009).
  • [21] Papynov, E.K., Shichalin, O.O., Mirenenko, A. Y., Ryako, A. V., Manakov, I. V., Makhrov, P.V., Brawlev I. Yu., Tananaev, I. G., Avramenko, V.A., Sergivenko, V. I., Synthesis of High-Density Pellets of Uranium Dioxide by Spark Plasma Sintering in Dies of Different Types, Radiochemistry, 60-4 (362-370), (2018).