Eşitlikçi Çok Amaçlı Sırt Çantası Problemi

Bu çalışmada, eşitlikçi kaygıların olduğu kaynak dağıtımı problemi için kullanılabilecek, çok amaçlı matematiksel modelleme yaklaşımı geliştirilmiştir. Karar vericinin eşitlikçi tercih ilişkisine sahip olduğu varsayılmış ve eşitlikçi Pareto çözümler bulunması amaçlanmıştır. Eşitlikçi Pareto çözüm kümesinin bulunması için, problemdeki eşitlikçi kaygıları gözönüne alarak tasarlanmış, eşitlikçi  Pareto çözümler vermeyecek durum  vektörlerini alt ve üst sınırlar kullanarak eleyen, bir dinamik programlama algoritması önerilmiştir. Bu algoritmada, yazında önerilen alt sınırlara ek olarak yeni bir alt sınır mekanizması kullanılmış ve etkililiği gösterilmiştir. Dinamik programlama algoritması, epsilon kısıt yöntemi ile iki amaçlı problemler için karşılaştırılmıştır. Ayrıca, üç amaçlı problemler için epsilon kısıt yöntemi sonuçları verilmiştir. 

___

  • [1] D. Baatar, M.M. Wiecek, Advancing equitability in multiobjective programming, Computers & Mathematics with Applications, Volume 52, Issues 1–2, 2006, 225-234.
  • [2] C. Bazgan, H. Hugot, D. Vanderpooten, Solving efficiently the 01 multi-objective knapsack problem, Computers & Operations Research 36 (1) (2009) 260-279, part Special Issue: Operations Research Approaches for Disaster Recovery Planning.
  • [3] M. E. Captivo, J. Clı́maco, J. Figueira, E. Martins, J. L. Santos, Solving bicriteria 0–1 knapsack problems using a labeling algorithm, Computers & Operations Research, 30 (12), 2003, 1865-1886.
  • [4] P. Czyzak, A. Jaszkiewicz, Pareto simulated annealing metaheuristic technique for multiple-objective combinatorial optimization, Journal of Multi-Criteria Decision Analysis 7 (1998) 34-47.
  • [5] M. Ehrgott ve Gandibleux, A survey and annotated bibliography of multiobjective combinatorial optimization, OR Spectrum 22 (4), (2000) 425-460.
  • [6] J. R. Figueira, L. Paquete, M. Sim~oes, D. Vanderpooten, Algorithmic improvements on dynamic programming for the bi-objective f0,1g knapsack problem, Computational Optimization and Applications 56 (1) (2013) 97-111.
  • [7] Ö. Karsu, A. Morton, Inequity averse optimisation in operational research, 245 (2), 2015, 343-359.
  • [8] Ö. Karsu, A. Morton Incorporating balance concerns in resource allocation decisions: A bi-criteria modelling approach, Omega 44 (2014) 70 - 82.
  • [9] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems, Springer, Berlin, 2004.
  • [10] K. Klamroth, M. M. Wiecek, Dynamic programming approaches to the multiple criteria knapsack problem, Naval Research Logistics 47 (1) (2000) 57-76.
  • [11] M. M. Kostreva, W. Ogryczak, Linear optimization with multiple equitable criteria, RAIRO Operations Research 33 (1999) 275-297.
  • [12] M. M. Kostreva, W. Ogryczak, A. Wierzbicki, Equitable aggregations and multiple criteria analysis, European Journal of Operational Research, 158, (2), 2004, 362-377.
  • [13] M. Laumanns, L. Thiele, E. Ziztler, An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method, European Journal of Operational Research 169 (2006) 932-942.
  • [14] M. Laumanns, L. Thiele, E. Zitzler, An adaptive scheme to generate the pareto front based on the epsilon-constraint method, in: J. Branke, K. Deb, K. Miettinen, R. E. bSteuer (Eds.), Practical Approaches to Multi-Objective Optimization, no. 04461 in Dagstuhl Seminar Proceedings, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany, 2005.
  • [15] S. Martello, P. Toth, Knapsack problems: algorithms and computer implementations, John Wiley & Sons, Inc., 1990.
  • [16] W. Ogryczak, A. Wierzbicki, M. Milewski, A multi-criteria approach to fair and efficient bandwidth allocation, Omega, 36 (3), 2008, 451-463.
  • [17] A. Rong, J.R. Figueira, M. PatoA two state reduction based dynamic programming algorithm for the bi-objective 0-1 knapsack problem Computers & Mathematics with Applications, 62 (2011), pp. 2913-2930.
  • [18] M. Visee, J. Teghem, M. Pirlot, E. Ulungu, Two-phases method and branch and bound procedures to solve the bi-objective knapsack problem, Journal of Global Optimization 12 (2) (1998) 139-155.
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji-Cover
  • Yayın Aralığı: 4
  • Başlangıç: 2013
  • Yayıncı: Gazi Üniversitesi , Fen Bilimleri Enstitüsü
Sayıdaki Diğer Makaleler

AISI 304 Paslanmaz Çeliğin Nokta Direnç Kaynağında Birleştirmenin Mekanik Özelliklerine Soğuma Hızının Etkisi

Uğur ARABACI, Gürhan KUŞTUTAN, Yusuf ÖZÇATALBAŞ

Eşitlikçi Çok Amaçlı Sırt Çantası Problemi

Özlem KARSU

Elektro Erozyon ile İşlemede İşleme Haznesine Uygulanan Titreşimlerin Geometrik Elektrot Aşınması Üzerindeki Etkilerinin İncelenmesi

Muhammed Emin ERDİN, Sadık Mert BALCI, Yağmur KOPRAMAN, Ali ÖZGEDİK

Duyarlı Tasarım İle Bir M2M Platformunun Gerçekleştirilmesi

Saadin OYUCU, Hüseyin POLAT

Al + % 4,5 Cu Ön Karışımlı Tozların Alaşımlanmasına Isıl İşlemlerin Etkisi

Kübra KÖPRÜLÜ, Adem KURT, Nefise MUTLU, Yusuf ÖZÇATALBAŞ, Behçet GÜLENÇ

Denetleyici Alan Ağı Tabanlı Motor Ve Sensör Kartlarının Kontrolü Ve İzlenmesi

Ahmet GÜNAYDIN, Kubilay TAŞDELEN, Ecir Uğur KÜÇÜKSİLLE, Mehmet Ali ŞİMŞEK

Denetimlerde Büyük Veri Kullanımı Ve Üzerine Bir Değerlendirme

Şeref SAĞIROĞLU, İlhan ÖZDEMİR

8-125 mm Kolemanit Cevherinin NIR/CCD Optik Ayırıcı ile Zenginleştirilmesi

Nurtaç K. KARABULUT, Fazlı C. METİN, Fatih ÖZYÜCEL, Mustafa BARIŞ

Aısı 304 Paslanmaz Çeliğin Direnç Kaynağında Birleşimin Mekanik Özelliklerine Soğuma Hızının Etkisi

Uğur Arabacı, Yusuf ÖZÇATALBAŞ, Gürhan KUŞTUTAN

8-125 MM KOLEMANİT CEVHERİNİN NIR/CCD OPTİK AYIRICI İLE ZENGİNLEŞTİRİLMESİ

Mustafa BARIŞ, Fazlı Cabbar METİN, Nurtaç Kıymet KARABULUT, Fatih ÖZYÜCEL ÖZYÜCEL