Bütünleşik SWARA-MULTIMOORA Yaklaşımı ile Uçak Gövdesi için Malzeme Seçimi

Saf elementlerin yanında alaşımlama, ısıl işlem gibi ardıl işlemler ve kompozit malzeme üretimi ile mühendislik malzemelerinin çeşidi her geçen gün daha da artmaktadır. Böylesine geniş bir malzeme havuzundan, üretilecek her bir farklı parça için en uygun malzemenin seçimi ise oldukça önemli bir hal almaktadır. Uçağın önemli bir bölümünü oluşturan gövde için uygun malzeme seçimi de bu açıdan oldukça önemlidir. Yolcu uçağı gövdesi için malzeme seçiminin amaçlandığı bu çalışmada, öncelikle uzman görüşleri doğrultusunda kriterler ve alternatifler belirlenmiştir. Yoğunluk, çekme dayanımı, kayma dayanımı, maliyet gibi kriterlerin dikkate alındığı çalışmada, kriter ağırlıkları SWARA yöntemi elde edilmiş, ardından belirlenen kriter ağırlıkları doğrultusunda alternatif malzemeler MULTIMOORA yöntemi ile sıralanmıştır. Sonuç olarak, yolcu uçağı gövdesi için en uygun ilk üç malzeme sırasıyla CFRP, Ti-6Al-4V ve GFRP olarak belirlenmiştir.

___

  • [1] Tabuchi, H. 'Worse than anyone expected': air travel emissions vastly outpace predictions. (2019). www.nytimes.com/2019/09/19/climate/air-travel-emissions.html. (Erişim Tarihi:18.07.2020).
  • [2] Anonim. New global agreement will help curb pollution from aviation. (2016). www.worldwildlife.org/stories/new-global-agreement-will-help-curb-pollution-from-aviation. (Erişim Tarihi:18.07.2020).
  • [3] Anonim. Reducing emissions from aviation. (2017). https://ec.europa.eu/clima/policies/transport/aviation_en. (Erişim Tarihi:18.07.2020).
  • [4] Steinegger, R. Fuel economy as function of weight and distance. Zürcher Fachhochschule, (1-11), (2017).
  • [5] Kryemadhi, W. How many miles do airplanes fly in the world each year? (2017). https://www.quora.com/How-many-miles-do-airplanes-fly-in-the-world-each-year (Erişim Tarihi:18.07.2020). [6] Anonim. Flight length. (2020). https://en.wikipedia.org/wiki/Flight_length (Erişim Tarihi:18.07.2020).
  • [7] Farokhi, S. (2020). Future propulsion systems and energy sources in sustainable aviation. John Wiley & Sons, 228-229.
  • [8] Singh, P., Pungotra, H., Kalsi, N. S. On the characteristics of titanium alloys for the aircraft applications. Materials Today: Proceedings, 4(8)(8971-8982), (2017).
  • [9] Jun, L. I. U., Yulong, L. I., Xiancheng, Y. U., Xiaosheng, G. A. O., Zongxing, L. I. U. Design of aircraft structures against threat of bird strikes. Chinese Journal of Aeronautics, 31(7)(1535-1558), (2018).
  • [10] Mousavi-Nasab, S. H., Sotoudeh-Anvari, A. A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems. Materials & Design, 121(237-253), (2017).
  • [11] Çalış Boyacı, A. selection of eco-friendly cities in Turkey via a hybrid hesitant fuzzy decision making approach. Applied Soft Computing, 89(106090), (2020).
  • [12] Shaikh, A., Singh, A., Ghose, D., Shabbiruddin. analysis and selection of optimum material to ımprovise braking system in automobiles using ıntegrated fuzzy-COPRAS methodology. International Journal of Management Science and Engineering Management, (1-9), (2020).
  • [13] Pu, Y., Ma, F., Han, L., Wang, G. Material selection of green design processes for car body via considering environment property. Mathematical Problems in Engineering, (1-8), (2020).
  • [14] Catibog, J. M. R., Lazarte, A. M. B., Magdaluyo Jr, E. R. Materials selection methods in the design of monocoque for a fuel efficient concept vehicle. Procedia CIRP, 84(998-1002), (2019).
  • [15] Ghose, D., Pradhan, S., Tamuli, P., Shabbiruddin. Optimal material for solar electric vehicle application using an ıntegrated fuzzy-COPRAS model. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, (1-20), (2019).
  • [16] Pu, Y., Ma, F., Zhang, J., Yang, M. Optimal lightweight material selection for automobile applications considering multi-perspective ındices. Ieee Access, 6(8591-8598), (2018).
  • [17] Dozic, S. Kalic, M.. Comparison of two MCDM methodologies in aircraft type selection problem. Transportation Research Procedia, 10(910-919), (2015).
  • [18] Dozic, S., Lutovac, T., Kalic, M. Fuzzy AHP approach to passenger aircraft type selection. Journal of Air Transport Management, 68(165-175), (2018).
  • [19] Zolfani, S. H., Aghdaie, M. H., Derakhti, A., Zavadskas, E. K., Varzandeh, M. H. M. Decision making on business ıssues with foresight perspective; An application of new hybrid MCDM model in shopping mall locating. Expert Systems with Applications, 40(17)(7111-7121), (2013).
  • [20] Stanujkic,D., Karabasevic, D., Zavadskas, E. K. A framework for the selection of a packaging design based on the SWARA method. Inzinerine Ekonomika-Engineering Economics, 26(2)(181-187), (2015).
  • [21] Karabašević, D., Stanujkić, D., Urošević, S. The MCDM model for personnel selection based on SWARA and ARAS methods. Management: Journal of Sustainable Business and Management Solutions in Emerging Economies, 20(77)(43-52), (2015).
  • [22] Çakır, E., Kutlu Karabıyık, B. Bütünleşik SWARA-COPRAS yöntemi kullanarak bulut depolama hizmet sağlayıcılarının değerlendirilmesi. Bilişim Teknolojileri Dergisi, 10(4)(417-434), (2017).
  • [23] Yurdoğlu, H., Kundakcı, N. SWARA ve WASPAS yöntemleri ile sunucu seçimi. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 20(38)(253-269), (2017).
  • [24] Çakır, E. Bütünleşik SWARA ve EDAS yöntemi kullanarak fitness merkezlerinin değerlendirilmesi: Örnek bir uygulama. Hitit Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 11(3)(1907-1923), (2018).
  • [25] Bakır, M. 2019. SWARA ve MABAC yöntemleri ile havayolu işletmelerinde ewom’ a dayalı memnuniyet düzeyinin analizi. İzmir İktisat Dergisi, 34(1)(51-66), (2019).
  • [26] Durmaz, K. İ., Gencer, C. Tedarikçi seçiminde entegre lojistik destek yaklaşımı ve işletme uygulaması: SWARA-SMAA-2. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(2)(828-841), (2019).
  • [27] Durmaz, K. İ., Çalış Boyacı, A., Gencer, C. Türkiye’deki düzey-1 bölgelerinin eğitim göstergeleri açısından çok kriterli karar verme yöntemleri ile değerlendirilmesi. Bilişim Teknolojileri Dergisi, 13(1)(13-25), (2020).
  • [28] Durmaz, K. İ., Gencer, C. A New plugin based on JSMAA: SWARA-JSMAA and aerobatic aircraft selection. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(3)(1487-1498), (2020).
  • [29] Ghenai, C., Albawab, M., Bettayeb, M. Sustainability ındicators for renewable energy systems using multi-criteria decision-making model and extended SWARA/ARAS hybrid method. Renewable Energy, 146(580-597), (2020).
  • [30] Brauers, W. K. M., Zavadskas, E.K. Project management by MULTIMOORA as an Instrument for transition economies. Technological and Economic Development of Economy, 16(1)(5-24), (2010).
  • [31] Baležentis, A., Baležentis, T., Brauers, W. K. M. Personnel selection based on computing with words and fuzzy MULTIMOORA. Expert Systems with Applications, 39(7961-7967), (2012).
  • [32] Baležentis, T., Zeng, S. Group multi-criteria decision making based upon interval-valued fuzzy numbers: An extension of the MULTIMOORA method. Expert Systems with Applications, 40(543-550), (2013).
  • [33] Özçelik, G., Aydoğan, E. K., Gencer, C. A hybrid moora-fuzzy algorithm for special education and rehabilitation center selection. Journal of Military and Information Science, 2(3)(53-62), (2014).
  • [34] Datta, S., Sahu, N., Mahapatra, S. Robot selection based on grey-MULTIMOORA approach. Grey Systems: Theory and Application, 3(2)(201-232), (2013).
  • [35] Altuntaş, S., Dereli, T., Yılmaz, M.K. Evaluation of excavator technologies: application of data fusion based MULTIMOORA methods. Journal of Civil Engineering and Management, 21(8)(977-997), (2015).
  • [36] Hafezalkotob, A., Hafezalkotob, A. Comprehensive MULTIMOORA method with target-based attributes and integrated significant coefficients for materials selection in biomedical applications. Materials and Design, 87(949-959), (2015).
  • [37] Türe, H., Koçak, D., Doğan, S. MULTIMOORA yöntemi ile ülke riski değerlendirmesi. Gazi Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 18(3)(824-844), (2016).
  • [38] Çalış, A., Özçelik, G., Gencer, C. Türkiye’deki imalat sanayi sektörlerinin PROMETHEE MULTİMOORA ve SMAA-2 yöntemleriyle sıralanması. Endüstri Mühendisliği Dergisi, 27(2)(28-44), (2016).
  • [39] Kabak, M., Erbaş, M., Çetinkaya, C., Özceylan, E. A GIS-based MCDM approach for the evaluation of bike-share stations. Journal of Cleaner Production, 201(49-60), (2018).
  • [40] Tian, Z.P., Wang, J.Q., Wang, J., Zhang, H.Y. A multi-phase QFD-based hybrid fuzzy MCDM approach for performance evaluation: a case of smart bike-sharing programs in Changsha. Journal of Cleaner Production, 171(1068-1083), (2018).
  • [41] Dahooie, J.H., Zavadskas, E.K., Firoozfar, H.R., Vanaki, A.S., Mohammadi, N., Brauers, W.K.M. An improved fuzzy MULTIMOORA approach for multi-criteria decision making based on objective weighting method (CCSD) and its application to technological forecasting method selection. Engineering Applications of Artificial Intelligence, 79(114-128), (2019).
  • [42] Rahimi, S., Hafezalkotob, A., Monavari, S.M., Hafezalkotob, A., Rahimi, R. Sustainable landfill site selection for municipal solid waste based on a hybrid decision-making approach: Fuzzy group BWM-MULTIMOORA-GIS. Journal of Cleaner Production, 248(11986), (2020).
  • [43] Keršulienė, V., Zavadskas, E.K., Turskis, Z. Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA), Journal of Business Economics and Management, 11(2)(243-258), (2010).
  • [44] Brauers, W. K. M., Zavadskas, E. K. The MOORA method and its application to privatization in a transition economy. Control Cybern. 35(2)(445-469), (2006).
  • [45] Baležentis, A., Baležentis, T., Valkauskas, R. Evaluating situation of lithuania in the european union: structural indicators and MULTIMOORA method. Technological and Economic Development of Economy, 16(4)(578-602), (2010).
  • [46] Brauers, W. K. M., Zavadskas, E. K. Multi-objective decision making with a large number of objectives. An application for Europe 2020. International Journal of Operations Research, 10(2)(67-79), (2013).
  • [47] Brauers, W. K. M., Zavadskas, E. K. 2011. MULTIMOORA optimization used to decide on a bank loan to buy property. Technological and Economic Development of Economy, 17(1)(174-188), (2011).
  • [48] Mouritz, A. P. (2012). Introduction to aerospace materials. Elsevier, Woodhead, Cambridge, 5.
  • [49] Zhang, X., Chen, Y., Hu, J. Recent advances in the development of aerospace materials. Progress in Aerospace Sciences, 97(22-34), (2018).
  • [50] Khanna, N., Davim, J. P. Design-of-experiments application in machining titanium alloys for aerospace structural components. Measurement, 61(280-290), (2015).
  • [51] Calado, E. A., Leite, M., Silva, A. Selecting composite materials considering cost and environmental ımpact in the early phases of aircraft structure design. Journal of Cleaner Production, 186(113-122), (2018).
  • [52] Huda, Z., Edi, P. Materials selection in design of structures and engines of supersonic aircrafts: A review. Materials & Design, 46(552-560), (2013).
  • [53] Callister, W. D., Rethwisch, D. G. (2018). Materials science and engineering: an introduction (Vol. 9). New York: Wiley.
  • [54] Jones, D. R., Ashby, M. F. (2018). Engineering materials 1: An introduction to properties, applications and design. Butterworth-Heinemann.