AlN/Saf Su Nanoakışkanının Isı Borusu Performans Parametreleri Üzerindeki Etkilerinin Deneysel Olarak Araştırılması

Sağlamış oldukları birçok fayda nedeniyle ısıl sistemlerde geleneksel iş akışkanları yerine nanoakışkan çözeltilerinin kullanımı son yılların en popüler konularından biri olmuştur. Bu deneysel çalışmada alüminyum nitrür (AlN) nanoparçacıkları içeren sulu nanoakışkan çözeltisi hazırlanmış ve farklı çalışma koşulları altında çalışan düz bir ısı borusunda test edilmiştir. Deneylerde kullanılan dairesel kesitli ısı borusu et kalınlığı 1 mm, iç çapı 13 mm ve uzunluğu 1000 mm olacak şekilde bakır malzemeden imal edilmiştir. Nanoparçacıkların sağlamış olduğu etkileri gözlemleyebilmek amacıyla deneyler önce saf su ardından nanoakışkan çözeltisi için gerçekleştirilmiştir. Yapılan deneylerde ısı boruları için performans göstergesi olan ısı borusunun ısıl direnci ve verimi karşılaştırmalı olarak ele alınmış, ısı borusu duvar sıcaklığındaki değişimler incelenmiştir. Deneyler sonucunda elde edilen veriler saf su yerine nanoakışkan kullanımıyla ısı borusu verimimin iyileştirilebileceğini ortaya koymuştur. Saf su yerine alüminyum nitrür nanoparçacıkları içeren nanoakışkanın iş akışkanı olarak kullanımıyla ısıl direnç ve verimdeki en yüksek artışlar sırasıyla %10,9 ve %45,6 olmuştur.

Experimental Investigation of the Influences of AlN/Deionized Water Nanofluid on Heat Pipe Performance Parameters

Utilization of nanofluidic solutions instead of conventional working fluids in thermal systems has become one of the most popular topics in recent years due to the many benefits they provide. In this experimental study, an aqueous nanofluid solution containing aluminum nitride (AlN) nanoparticles was prepared and tested in a plain heat pipe under different operating conditions. The circular heat pipe used in the experiments was made of copper material with a wall thickness of 1 mm, an inner diameter of 13 mm and a length of 1000 mm. In order to observe the effects of nanoparticles, experiments were initially carried out for deionized water and then for nanofluid solution. In the experiments, the thermal resistance and efficiency of the heat pipe, both of which are the performance indicators for heat pipes, were comparatively studied, and the alterations in temperature of the heat pipe wall were monitored. The data obtained from the experiments revealed that the heat pipe efficiency can be improved by employing nanofluid instead of deionized water. With the use of nanofluid containing aluminum nitride nanoparticles instead of deionized water as the working fluid, the maximum enhancements in thermal resistance and efficiency were recorded as 10.9% and 45.6%, respectively.

___

  • 1. Sözen A., Variyenli HI., Özdemir MB., Gürü M. Upgrading the thermal performance of parallel and cross-flow concentric tube heat exchangers using MgO nanofluid. Heat Transfer Research, 48(419–434), (2017). https://doi.org/10.1615/HeatTransRes.2016011522
  • 2. Çiftçi, E. (2020). Nanoakışkanların Kaynama-Yoğuşma Isı Transferi Karakteristiklerinin Deneysel ve Sayısal Olarak İncelenmesi, Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 41-42.
  • 3. Chen YJ., Wang PY., Liu ZH., Li, YY. Heat transfer characteristics of a new type of copper wire-bonded flat heat pipe using nanofluids. International Journal of Heat and Mass Transfer, 67(548-559), (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.060
  • 4. Sadeghinezhad E., Mehrali M., Rosen MA., Akhiani AR., Latibari ST., Mehrali, M., Metselaar, HSC. Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance. Applied Thermal Engineering, 100(775-787), (2016). https://doi.org/10.1016/j.applthermaleng.2016.02.071
  • 5. Gürü M., Sözen A., Karakaya U., Çiftçi E. Influences of bentonite-deionized water nanofluid utilization at different concentrations on heat pipe performance: An experimental study. Applied Thermal Engineering, 148(632-640), (2019). https://doi.org/10.1016/j.applthermaleng.2018.11.024
  • 6. Sarafraz MM., Hormozi F., Peyghambarzadeh SM. Thermal performance and efficiency of a thermosyphon heat pipe working with a biologically ecofriendly nanofluid. International Communications in Heat and Mass Transfer, 57(297-303), (2014). https://doi.org/10.1016/j.icheatmasstransfer.2014.08.020
  • 7. Qu J., Wu HY., Cheng P. Thermal performance of an oscillating heat pipe with Al2O3 water nanofluids. International Communications in Heat and Mass Transfer, 37(111-115), (2010). https://doi.org/10.1016/j.icheatmasstransfer.2009.10.001
  • 8. Xu Y., Xue Y., Qi H., Cai W. Experimental study on heat transfer performance of pulsating heat pipes with hybrid working fluids. International Journal of Heat and Mass Transfer, 157(119727), (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119727
  • 9. Utomo AT., Poth H., Robbins PT., Pacek AW. Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids. International Journal of Heat and Mass Transfer, 55(7772-7781), (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.003
  • 10. Akbari A., Saidi MH. Experimental investigation of nanofluid stability on thermal performance and flow regimes in pulsating heat pipe. Journal of Thermal Analysis and Calorimetry, 135(1835-1847), (2019). https://doi.org/10.1007/s10973-018-7388-3
  • 11. Y. Aydın D., Gürü M., Sözen A. Preparation of bauxite/deionized water nanofluid and experimental investigation of its thermophysical properties. Politeknik Dergisi, (basımda). https://doi.org/10.2339/politeknik.649417
  • 12. Dehaj, MS., Mohiabadi MZ. Experimental investigation of heat pipe solar collector using MgO nanofluids. Solar Energy Materials and Solar Cells, 191(91-99), (2019). https://doi.org/10.1016/j.solmat.2018.10.025
  • 13. Pandiaraj P., Gnanavelbabu A., Saravanan P. Experimental and statistical analysis of MgO nanofluids for thermal enhancement in a novel flat plate heat pipes. International Journal of Nanoscience, 17(1760018), (2018). https://doi.org/10.1142/S0219581X17600183
  • 14. Aytaç İ., CuO/su ve ZnO/su nanoakışkanların ısı borusu performansına etkisinin incelenmesi. Politeknik Dergisi, (basımda). https://doi.org/10.2339/politeknik.755358
  • 15. Holman, J. P. (2001). Experimental methods for engineers (7th edition). New York: McGraw-Hill.
  • 16. Bianco, V., Manca, O., Nardini, S. and Vafai, K., (2015). Heat transfer enhancement with nanofluids. New York: CRC Press, 150.