Biomimetik Yaklaşımla Süperhidrofobik Yüzey Geliştirilmesi

Biomimetik yaklaşım, tasarım araştırmaları alanında yeni olanaklar sunmakta olup süperhidrofobik yüzey tasarımı bu alanlardan bir tanesidir. Bir yüzeyin geometrik ve kimyasal özellikleri süperhidrofobisite için belirleyici olan asli faktörlerdir. Bu çerçevede biomimetik yaklaşım, doğadaki süperhidrofobik bir yüzeyin geometrik özelliklerinin tasarlanan süperhidrofobik bir yüzeye aktarılmasında kullanılabilir. Tasarlanan modelin, belirlenen geometrik özelliklere sahip olacak şekilde imal edilebilmesi için uygun bir imalat yönteminin seçilmesi önemlidir. Yüzeyin gerekli kimyasal özelliklere sahip olabilmesi içinse malzeme seçimi önemli olmaktadır. Bu çalışmada, biomimetik yaklaşım kullanılarak süperhidrofobik yüzey imal edilmesi konusu ele alınmıştır. Bu çerçevede, süperhidrofobisite kavramının yıllar içinde gelişen teorik altyapısı incelenmiş olup üç boyutlu yazıcı ile model imal edilmesi, karbon nanotüp esaslı nanokompozit malzeme geliştirilmesi ve geliştirilen nanokompozit malzeme kullanılarak elektrospinning ile yüzey kaplanması işlemlerinden oluşan bir yöntemler bütününün süperhidrofobik yüzey imal edilmesinde uygulanabilirliği değerlendirilmiştir.

Superhydrophobic Surface Development with Biomimetic Approach

Biomimetic approach provides new opportunities in the design research field, and superhydrophobic surface design is one of them. The geometrical and chemical properties of a surface are the main determinative factors for the superhydrophobicity. In this regard biomimetic approach, could be employed for transferring the geometrical properties of a superhydrophobic surface in the nature to a designed superhydrophobic surface. The selection of a suitable manufacturing method is important for manufacturing a designed model to have the specified geometrical properties. The selection of the material is important as for the surface to possess the required chemical properties. In this study, manufacturing a superhydrophobic surface by employing biomimetic approach is discussed. In this framework, the theoretical background of the superhydrophobicity concept that has emerged over the years is investigated; applicability of a set of methods for obtaining a superhydrophobic surface composed of the processes of manufacturing a model with a three-dimensional printer, developing a carbon nanotube-based nanocomposite material, and coating the surface by electrospinning using the developed nanocomposite material is evaluated.

___

  • [1] Barthlott W. and Neinhuis C., “Purity of the sacred lotus, or escape from contamination in biological surfaces”, Planta, 202(1): 1–8, (1997), doi: 10.1007/s004250050096.
  • [2] Barthlott W., Schimmel T., Wiersch S., Koch K., Brede M., Barczewski M., Walheim S., Weis A., Kaltenmaier A., Leder A. and Bohn H. F., “The Salvinia Paradox: Superhydrophobic Surfaces with Hydrophilic Pins for Air Retention Under Water”, Advanced Materials, 22(21): 2325–2328, (2010), doi: 10.1002/adma.200904411.
  • [3] Autumn K., Sitti M., Liang Y. A., Peattie A. M., Hansen W. R., Sponberg S., Kenny T. W., Fearing R., Israelachvili J. N. and Full R. J., “Evidence for van der Waals adhesion in gecko setae”, Proceedings of the National Academy of Sciences, 99(19): 12252–12256, (2002), doi: 10.1073/pnas.192252799.
  • [4] Muisenberg S., Appelman J. and Baumeister D., “Biomimicry: Design and innovation that help reach eco-effective solutions”, Green ICT & Energy: From Smart to Wise Strategies, CRC Press, London, (2013), doi: 10.1201/b16361.
  • [5] Gao L., McCarthy T. J. and Zhang X., “Wetting and Superhydrophobicity”, Langmuir, 25(24): 14100–14104, (2009), doi: 10.1021/la903043a.
  • [6] Law K. Y., “Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right”, The Journal of Physical Chemistry Letters, 5(4): 686–688, (2014), doi: 10.1021/jz402762h.
  • [7] Nosonovsky M. and Bhushan B., “Superhydrophobic surfaces and emerging applications: Non-adhesion, energy, green engineering”, Current Opinion in Colloid and Interface Science, 14(4): 270–280, (2009), doi: 10.1016/j.cocis.2009.05.004.
  • [8] Shirtcliffe N. J., McHale G., Atherton S. and Newton M. I., “An introduction to superhydrophobicity”, Advances in Colloid and Interface Science, 161(1–2): 124–138, (2010), doi: 10.1016/j.cis.2009.11.001.
  • [9] Young T., “An essay on the cohesion of fluids”, Philosophical Transactions of the Royal Society of London, 95: 65–87, (1805 III), doi: 10.1098/rstl.1805.0005.
  • [10] Zhu J. and Dai X., “A new model for contact angle hysteresis of superhydrophobic surface”, AIP Advances, 9(6): 065309(1-6), (2019), doi: 10.1063/1.5100548.
  • [11] Zhang X., Wang L. and Levänen E., “Superhydrophobic surfaces for the reduction of bacterial adhesion”, RSC Advances, 3(30): 12003-12020, (2013), doi: 10.1039/C3RA40497H.
  • [12] Marmur A., “Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be?”, Langmuir, 19(20): 8343–8348, (2003), doi: 10.1021/la0344682.
  • [13] Wenzel R. N., “Resistance of Solid Surfaces to Wetting by Water”, Industrial and Engineering Chemistry, 28(8): 988–994, (1936), doi: 10.1021/ie50320a024.
  • [14] Wenzel R. N., “Surface Roughness and Contact Angle”, The Journal of Physical and Colloid Chemistry, 53(9): 1466–1467, (1949), doi: 10.1021/j150474a015.
  • [15] Bico J., Marzolin C. and Quéré D., “Pearl drops”, Europhysics Letters (EPL), 47(2): 220–226, (1999), doi: 10.1209/epl/i1999-00548-y.
  • [16] Cassie A. B. D. and Baxter S., “Wettability of porous surfaces”, Transactions of the Faraday Society, 40: 546-551, (1944), doi: 10.1039/TF9444000546.
  • [17] Cassie A. B. D., “Contact angles”, Discussions of the Faraday Society, 3: 11-16, (1948), doi: 10.1039/DF9480300011.
  • [18] Marmur A., “Super-hydrophobicity fundamentals: implications to biofouling prevention”, Biofouling, 22(2): 107–115, (2006), doi: 10.1080/08927010600562328.
  • [19] Patankar N. A., “On the Modeling of Hydrophobic Contact Angles on Rough Surfaces”, Langmuir, 19(4):1249-1253, (2003), doi: 10.1021/la026612+.
  • [20] Darmanin T. and Guittard F., “Superhydrophobic and superoleophobic properties in nature”, Materials Today, 18(5): 273–285, (2015), doi: 10.1016/j.mattod.2015.01.001.
  • [21] Ueda E. and Levkin P. A., “Emerging Applications of Superhydrophilic-Superhydrophobic Micropatterns”, Advanced Materials, 25(9): 1234–1247, (2013), doi: 10.1002/adma.201204120.
  • [22] Johnson R. E. and Dettre R. H., “Contact Angle Hysteresis I. Study of an idealized rough surface”, Contact Angle, Wettability, and Adhesion, Advances in Chemistry Series 43, ACS, Washington, DC, (1964), doi: 10.1021/ba-1964-0043.
  • [23] Khandelwal M. and Sharma C. S., “Nature Inspires”, Resonance, 26(9): 1279–1285, (2021), doi: 10.1007/s12045-021-1229-6.
  • [24] Miwa M., Nakajima A., Fujishima A., Hashimoto K. and Watanabe T., “Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces”, Langmuir, 16(13): 5754–5760, (2000), doi: 10.1021/la991660o.
  • [25] Marmur A., “The Lotus Effect: Superhydrophobicity and Metastability”, Langmuir, 20(9): 3517–3519, (2004), doi: 10.1021/la036369u.
  • [26] Minghao R., Chengxia Y., Yuan F., Kaikai Z., Yaqin R., Jie W., Hong Y. and Yinfeng L., “Model for Rolling Angle”, The Journal of Physical Chemistry C, 116(15): 8449–8455, (2012), doi: 10.1021/jp210261b.
  • [27] Li W. and Amirfazli A., “Superhydrophobic Surfaces: Adhesive Strongly to Water?”, Advanced Materials, 19(21): 3421–3422, (2007), doi: 10.1002/adma.200601764.
  • [28] Bhushan B. and Nosonovsky M., “The rose petal effect and the modes of superhydrophobicity”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1929): 4713–4728, (2010), doi: 10.1098/rsta.2010.0203.
  • [29] Guo Z. and Liu W., “Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure”, Plant Science, 172(6): 1103–1112, (2007), doi:10.1016/j.plantsci.2007.03.005.
  • [30] Patankar N. A., “Hysteresis with Regard to Cassie and Wenzel States on Superhydrophobic Surfaces”, Langmuir, 26(10): 7498–7503, (2010), doi: 10.1021/la904286k.
  • [31] Roach P., Shirtcliffe N. J. and Newton M. I., “Progess in superhydrophobic surface development”, Soft Matter, 4(2): 224–240, (2008), doi: 10.1039/B712575P.
  • [32] Balu B., Breedveld V. and Hess D. W., “Fabrication of “Roll-off” and “Sticky” Superhydrophobic Cellulose Surfaces via Plasma Processing”, Langmuir, 24(9): 4785–4790, (2008), doi: 10.1021/la703766c.
  • [33] Wang S. and Jiang L., “Definition of Superhydrophobic States”, Advanced Materials, 19(21): 3423–3424, (2007), doi: 10.1002/adma.200700934.
  • [34] Bhagat S. D. and Gupta M. C., “Superhydrophobic microtextured polycarbonate surfaces”, Surface and Coatings Technology, 270: 117–122, (2015), doi: 10.1016/j.surfcoat.2015.03.013.
  • [35] Extrand C. W., “Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces”, Langmuir, 18(21): 7991–7999, (2002), doi: 10.1021/la025769z.
  • [36] Gao L. and McCarthy T. J., “Wetting 101°”, Langmuir, 25(24): 14105–14115, (2009), doi: 10.1021/la902206c.
  • [37] Gao L. and McCarthy T. J., “How Wenzel and Cassie Were Wrong”, Langmuir, 23(7): 3762–3765, (2007), doi: 10.1021/la062634a.
  • [38] McHale G., “Cassie and Wenzel: Were They Really So Wrong?”, Langmuir, 23(15): 8200–8205, (2007), doi: 10.1021/la7011167.
  • [39] Marmur A. and Bittoun E., “When Wenzel and Cassie Are Right: Reconciling Local and Global Considerations”, Langmuir, 25(3): 1277–1281, (2009), doi: 10.1021/la802667b.
  • [40] Panchagnula M. V. and Vedantam S., “Comment on How Wenzel and Cassie Were Wrong by Gao and McCarthy”, Langmuir, 23(26): 13242–13242, (2007), doi: 10.1021/la7022117.
  • [41] Nosonovsky M., “On the Range of Applicability of the Wenzel and Cassie Equations”, Langmuir, 23(19): 9919–9920, (2007), doi: 10.1021/la701324m.
  • [42] Godeau G., Laugier J. P., Orange F., Godeau R. P., Guittard F. and Darmanin T., “A travel in the Echeveria genus wettability’s World”, Applied Surface Science, 411: 291–302, (2017), doi: 10.1016/j.apsusc.2017.03.192.
  • [43] Gao N., Yan Y. Y., Chen X. Y. and Mee D. J., “Superhydrophobic surfaces with hierarchical structure”, Materials Letters, 65(19–20): 2902–2905, (2011), doi: 10.1016/j.matlet.2011.06.088.
  • [44] Nishino T., Meguro M., Nakamae K., Matsushita M. and Ueda Y., “The Lowest Surface Free Energy Based on −CF3 Alignment”, Langmuir, 15(13): 4321–4323, (1999), doi: 10.1021/la981727s.
  • [45] Nosonovsky M., “Multiscale Roughness and Stability of Superhydrophobic Biomimetic Interfaces”, Langmuir, 23(6): 3157–3161, (2007), doi: 10.1021/la062301d.
  • [46] Bhushan B., Jung Y. C. and Koch K., “Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1894): 1631–1672, (2009), doi: 10.1098/rsta.2009.0014.
  • [47] Neinhuis C. and Barthlott W., “Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces”, Annals of Botany, 79(6): 667–677, (1997), doi: 10.1006/anbo.1997.0400.
  • [48] Feng L., Li S., Li Y., Li H., Zhang L., Zhai J., Song Y., Liu B., Jiang L. and Zhu D., “Super-Hydrophobic Surfaces: From Natural to Artificial”, Advanced Materials, 14(24): 1857–1860, (2002), doi: 10.1002/adma.200290020.
  • [49] Su Y., Ji B., Zhang K., Gao H., Huang Y. and Hwang K., “Nano to Micro Structural Hierarchy Is Crucial for Stable Superhydrophobic and Water-Repellent Surfaces”, Langmuir, 26(7): 4984–4989, (2010), doi: 10.1021/la9036452.
  • [50] Jeong H. E., Kwak M. K., Park C. I. and Suh K. Y., “Wettability of nanoengineered dual-roughness surfaces fabricated by UV-assisted capillary force lithography”, Journal of Colloid and Interface Science, 339(1): 202–207, (2009), doi: 10.1016/j.jcis.2009.07.020.
  • [51] Otten A. and Herminghaus S., “How Plants Keep Dry: A Physicist’s Point of View”, Langmuir, 20(6): 2405–2408, (2004), doi: 10.1021/la034961d.
  • [52] Lee H. J. and Michielsen S., “Lotus effect: Superhydrophobicity”, Journal of the Textile Institute, 97(5): 455–462, (2006), doi: 10.1533/joti.2006.0271.
  • [53] Zheng Y., Gao X. and Jiang L., “Directional adhesion of superhydrophobic butterfly wings”, Soft Matter, 3(2): 178–182, (2007), doi: 10.1039/B612667G.
  • [54] Gao X. and Jiang L., “Water-repellent legs of water striders”, Nature, 432(7013): 36, (2004), doi: 10.1038/432036a.
  • [55] Koch K., Bohn H. F. and Barthlott W., “Hierarchically Sculptured Plant Surfaces and Superhydrophobicity”, Langmuir, 25(24): 14116–14120, (2009), doi: 10.1021/la9017322.
  • [56] Autumn K., Liang Y. A., Hsieh S. T., Zesch W., Chan W. P., Kenny T. W., Fearing R. and Full R. J., “Adhesive force of a single gecko foot-hair”, Nature, 405(6787): 681–685, (2000), doi: 10.1038/35015073.
  • [57] Liu K., Du J., Wu J. and Jiang L., “Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials”, Nanoscale, 4(3): 768–772, (2012), doi: 10.1039/C1NR11369K.
  • [58] Feng L., Zhang Y., Xi J., Zhu Y., Wang N., Xia F. and Jiang L., “Petal Effect: A Superhydrophobic State with High Adhesive Force”, Langmuir, 24(8): 4114–4119, (2008), doi: 10.1021/la703821h.
  • [59] Liu M., Zheng Y., Zhai J. and Jiang L., “Bioinspired Super-antiwetting Interfaces with Special Liquid−Solid Adhesion”, Accounts of Chemical Research, 43(3): 368–377, (2010), doi: 10.1021/ar900205g.
  • [60] Bhushan B. and Her E. K., “Fabrication of Superhydrophobic Surfaces with High and Low Adhesion Inspired from Rose Petal”, Langmuir, 26(11): 8207–8217, (2010), doi: 10.1021/la904585j.
  • [61] Si Y., Dong Z. and Jiang L., “Bioinspired Designs of Superhydrophobic and Superhydrophilic Materials”, ACS Central Science, 4(9): 1102–1112, (2018), doi: 10.1021/acscentsci.8b00504.
  • [62] Yu C., Sasic S., Liu K., Salameh S., Ras R. H. and van Ommen J. R., “Nature–Inspired self–cleaning surfaces: Mechanisms, modelling, and manufacturing”, Chemical Engineering Research and Design, 155: 48–65, (2020), doi: 10.1016/j.cherd.2019.11.038.
  • [63] Webb H. K., Crawford R. J. and Ivanova E. P., “Wettability of natural superhydrophobic surfaces”, Advances in Colloid and Interface Science, 210: 58–64, (2014), doi: 10.1016/j.cis.2014.01.020.
  • [64] Liu K. and Jiang L., “Bio-inspired design of multiscale structures for function integration”, Nano Today, 6(2): 155–175, (2011), doi: 10.1016/j.nantod.2011.02.002.
  • [65] Liu K., Yao X. and Jiang L., “Recent developments in bio-inspired special wettability”, Chemical Society Reviews, 39(8): 3240-3255, (2010), doi: 10.1039/B917112F.
  • [66] Barthlott W., Mail M. and Neinhuis C., “Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2073): 20160191(1-41), (2016), doi: 10.1098/rsta.2016.0191.
  • [67] Sethi S. K. and Manik G., “Recent Progress in Super Hydrophobic/Hydrophilic Self-Cleaning Surfaces for Various Industrial Applications: A Review”, Polymer-Plastics Technology and Engineering, 57(18): 1932–1952, (2018), doi: 10.1080/03602559.2018.1447128.
  • [68] Ko D. H., Tumbleston J. R., Henderson K. J., Euliss L. E., DeSimone J. M., Lopez R. and Samulski E. T., “Biomimetic microlens array with antireflective “moth-eye” surface”, Soft Matter, 7(14): 6404-6407, (2011), doi: 10.1039/C1SM05302G.
  • [69] Kuo W. K., Hsu J. J., Nien C. K. and Yu H. H., “Moth-Eye-Inspired Biophotonic Surfaces with Antireflective and Hydrophobic Characteristics”, ACS Applied Materials & Interfaces, 8(46): 32021–32030, (2016), doi: 10.1021/acsami.6b10960.
  • [70] Min W. L., Jiang B. and Jiang P., “Bioinspired Self-Cleaning Antireflection Coatings”, Advanced Materials, 20(20): 3914–3918, (2008), doi: 10.1002/adma.200800791.
  • [71] Gao X., Yan X., Yao X., Xu L., Zhang K., Zhang J., Yang B. and Jiang L., “The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography”, Advanced Materials, 19(17): 2213–2217, (2007), doi: 10.1002/adma.200601946.
  • [72] Bormashenko E., Bormashenko Y., Stein T., Whyman G. and Bormashenko E., “Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie–Baxter wetting hypothesis and Cassie–Wenzel capillarity-induced wetting transition”, Journal of Colloid and Interface Science, 311(1): 212–216, (2007), doi: 10.1016/j.jcis.2007.02.049.
  • [73] Parker A. R. and Lawrence C. R., “Water capture by a desert beetle”, Nature, 414(6859): 33–34, (2001), doi: 10.1038/35102108.
  • [74] Zhai L., Berg M. C., Cebeci F. Ç, Kim Y., Milwid J. M., Rubner M. F. and Cohen R. E., “Patterned Superhydrophobic Surfaces: Toward a Synthetic Mimic of the Namib Desert Beetle”, Nano Letters, 6(6): 1213–1217, (2006), doi: 10.1021/nl060644q.
  • [75] Gu Z. Z., Wei H. M., Zhang R. Q., Han G. Z., Pan C., Zhang H., Tian X. J. and Chen Z. M., “Artificial silver ragwort surface”, Applied Physics Letters, 86(20): 201915(1-3), (2005), doi: 10.1063/1.1931054.
  • [76] Rakitov R. and Gorb S. N., “Brochosomal coats turn leafhopper (Insecta, Hemiptera, Cicadellidae) integument to superhydrophobic state”, Proceedings of the Royal Society B: Biological Sciences, 280(1752): 20122391(1-9), (2013), doi: 10.1098/rspb.2012.2391.
  • [77] Gundersen H., Leinaas H. P. and Thaulow C., “Surface Structure and Wetting Characteristics of Collembola Cuticles”, PLoS ONE, 9(2): e86783(1-11), (2014), doi: 10.1371/journal.pone.0086783.
  • [78] Celia E., Darmanin T., Taffin de Givenchy E., Amigoni S. and Guittard F., “Recent advances in designing superhydrophobic surfaces”, Journal of Colloid and Interface Science, 402: 1–18, (2013), doi: 10.1016/j.jcis.2013.03.041.
  • [79] Kaur G., Marmur A. and Magdassi S., “Fabrication of superhydrophobic 3D objects by Digital Light Processing”, Additive Manufacturing, 36: 101669(1-10), (2020), doi: 10.1016/j.addma.2020.101669.
  • [80] Asmatulu R., Ceylan M. and Nuraje N., “Study of Superhydrophobic Electrospun Nanocomposite Fibers for Energy Systems”, Langmuir, 27(2): 504–507, (2010), doi: 10.1021/la103661c.
  • [81] Zhang Z., Ge B., Men X. and Li Y., “Mechanically durable, superhydrophobic coatings prepared by dual-layer method for anti-corrosion and self-cleaning”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 490: 182–188, (2016), doi: 10.1016/j.colsurfa.2015.11.049.
  • [82] Xiu Y., Liu Y., Hess D. W. and Wong C. P., “Mechanically robust superhydrophobicity on hierarchically structured Si surfaces”, Nanotechnology, 21(15): 155705(1-5), (2010), doi: 10.1088/0957-4484/21/15/155705.
  • [83] Buck M. E., Schwartz S. C. and Lynn D. M., “Superhydrophobic Thin Films Fabricated by Reactive Layer-by-Layer Assembly of Azlactone-Functionalized Polymers”, Chemistry of Materials, 22(23): 6319–6327, (2010), doi: 10.1021/cm102115e.
  • [84] Hsiang H. I., Liang M. T., Huang H. C. and Yen F. S., “Preparation of superhydrophobic boehmite and anatase nanocomposite coating films”, Materials Research Bulletin, 42(3): 420–427, (2007), doi: 10.1016/j.materresbull.2006.07.006.
  • [85] Wang X., Li X., Lei Q., Wu Y. and Li W., “Fabrication of superhydrophobic composite coating based on fluorosilicone resin and silica nanoparticles”, Royal Society Open Science, 5(7): 180598(1-15), (2018), doi: 10.1098/rsos.180598.
  • [86] Jiang S., Guo Z., Gyimah G. K., Zhang C. and Liu G., “Preparation of Biomimetic Superhydrophobic Surface by a Facile One-step Pulse Electrodeposition”, Procedia CIRP, 68: 237–241, (2018), doi: 10.1016/j.procir.2017.12.055.
  • [87] Karmouch R. and Ross G. G., “Superhydrophobic wind turbine blade surfaces obtained by a simple deposition of silica nanoparticles embedded in epoxy”, Applied Surface Science, 257(3): 665–669, (2010), doi: 10.1016/j.apsusc.2010.07.041.
  • [88] Lee E. and Lee K. H., “Facile fabrication of superhydrophobic surfaces with hierarchical structures”, Scientific Reports, 8: 4101(1-7), (2018), doi: 10.1038/s41598-018-22501-8.
  • [89] Ngo C. V. and Chun D. M., “Laser Printing of Superhydrophobic Patterns from Mixtures of Hydrophobic Silica Nanoparticles and Toner Powder”, Scientific Reports, 6: 36735(1-9), (2016), doi: 10.1038/srep36735.
  • [90] Serles P., Nikumb S. and Bordatchev E., “Superhydrophobic and superhydrophilic functionalized surfaces by picosecond laser texturing”, Journal of Laser Applications, 30(3): 032505(1-6), (2018), doi: 10.2351/1.5040641.
  • [91] Ta V. D., Dunn A., Wasley T. J., Li J., Kay R. W., Stringer J., Smith P. J., Esenturk E., Connaughton C. and Shephard J. D., “Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition”, Applied Surface Science, 365: 153–159, (2016), doi: 10.1016/j.apsusc.2016.01.019.
  • [92] Lee Y., Yoo Y., Kim J., Widhiarini S., Park B., Park H. C., Yoon K. J. and Byun D., “Mimicking a Superhydrophobic Insect Wing by Argon and Oxygen Ion Beam Treatment on Polytetrafluoroethylene Film”, Journal of Bionic Engineering, 6(4): 365–370, (2009), doi: 10.1016/S1672-6529(08)60130-4.
  • [93] Li Y., Huang X. J., Heo S. H., Li C. C., Choi Y. K., Cai W. P. and Cho S. O., “Superhydrophobic Bionic Surfaces with Hierarchical Microsphere/SWCNT Composite Arrays”, Langmuir, 23(4): 2169–2174, (2007), doi: 10.1021/la0620758.
  • [94] Deng W., Long M., Zhou Q., Wen N. and Deng W., “One-step preparation of superhydrophobic acrylonitrile-butadiene-styrene copolymer coating for ultrafast separation of water-in-oil emulsions”, Journal of Colloid and Interface Science, 511: 21–26, (2018), doi: 10.1016/j.jcis.2017.09.070.
  • [95] Cho Y. S., Ahn S. H. and Lee S. H., “Fabrication and analysis of PMMA, ABS, PS, and PC superhydrophobic surfaces using the spray method”, Journal of the Korean Physical Society, 63(2): 218–224, (2013), doi: 10.3938/jkps.63.218.
  • [96] Li Y., Zhang J., Zhu S., Dong H., Jia F., Wang Z., Tang Y., Zhang L., Zhang S. and Yang B., “Bioinspired Silica Surfaces with Near-Infrared Improved Transmittance and Superhydrophobicity by Colloidal Lithography”, Langmuir, 26(12): 9842–9847, (2010), doi: 10.1021/la100183y.
  • [97] Xiu Y., Zhu L., Hess D. W. and Wong C. P., “Relationship between Work of Adhesion and Contact Angle Hysteresis on Superhydrophobic Surfaces”, The Journal of Physical Chemistry C, 112(30): 11403–11407, (2008), doi: 10.1021/jp711571k.
  • [98] Fan Z. P., Liu W. L., Wei Z. J., Yao J. S., Sun X. L., Li M. and Wang X. Q., “Fabrication of two biomimetic superhydrophobic polymeric surfaces”, Applied Surface Science, 257(9): 4296–4301, (2011), doi: 10.1016/j.apsusc.2010.12.039.
  • [99] Aruna S. T., Binsy P., Richard E. and Basu B. J., “Properties of phase separation method synthesized superhydrophobic polystyrene films”, Applied Surface Science, 258(7): 3202–3207, (2012), doi: 10.1016/j.apsusc.2011.11.064.
  • [100] Liu H., Feng L., Zhai J., Jiang L. and Zhu D., “Reversible Wettability of a Chemical Vapor Deposition Prepared ZnO Film between Superhydrophobicity and Superhydrophilicity”, Langmuir, 20(14): 5659–5661, (2004), doi: 10.1021/la036280o.
  • [101] Lim H. S., Han J. T., Kwak D., Jin M. and Cho K., “Photoreversibly Switchable Superhydrophobic Surface with Erasable and Rewritable Pattern”, Journal of the American Chemical Society, 128(45): 14458–14459, (2006), doi: 10.1021/ja0655901.
  • [102] Lai Y., Lin C., Wang H., Huang J., Zhuang H. and Sun L., “Superhydrophilic–superhydrophobic micropattern on TiO2 nanotube films by photocatalytic lithography”, Electrochemistry Communications, 10(3): 387–391, (2008), doi: 10.1016/j.elecom.2007.12.020.
  • [103] Qi D., Lu N., Xu H., Yang B., Huang C., Xu M., Gao L., Wang Z. and Chi L., “Simple Approach to Wafer-Scale Self-Cleaning Antireflective Silicon Surfaces”, Langmuir, 25(14): 7769–7772, (2009), doi: 10.1021/la9013009.
  • [104] Pan L., Dong H. and Bi P., “Facile preparation of superhydrophobic copper surface by HNO3 etching technique with the assistance of CTAB and ultrasonication”, Applied Surface Science, 257(5): 1707–1711, (2010), doi: 10.1016/j.apsusc.2010.09.001.
  • [105] Feng J., Huang M. and Qian X., “Fabrication of Polyethylene Superhydrophobic Surfaces by Stretching-Controlled Micromolding”, Macromolecular Materials and Engineering, 294(5): 295–300, (2009), doi: 10.1002/mame.200800331.
  • [106] Jeong H. E., Lee S. H., Kim J. K. and Suh K. Y., “Nanoengineered Multiscale Hierarchical Structures with Tailored Wetting Properties”, Langmuir, 22(4): 1640–1645, (2006), doi: 10.1021/la0526434.
  • [107] Basu B. J., Hariprakash V., Aruna S. T., Lakshmi R. V., Manasa J. and Shruthi B. S., “Effect of microstructure and surface roughness on the wettability of superhydrophobic sol–gel nanocomposite coatings”, Journal of Sol-Gel Science and Technology, 56(3): 278–286, (2010), doi: 10.1007/s10971-010-2304-8.
  • [108] Huang W. H. and Lin C. S., “Robust superhydrophobic transparent coatings fabricated by a low-temperature sol–gel process”, Applied Surface Science, 305: 702–709, (2014), doi: 10.1016/j.apsusc.2014.03.179.
  • [109] Chen M. H., Hsu T. H., Chuang Y. J. and Tseng F., “Dual hierarchical biomimic superhydrophobic surface with three energy states”, Applied Physics Letters, 95(2): 023702(1-3), (2009), doi: 10.1063/1.3180114.
  • [110] Luo C., Zuo X., Wang L., Wang E., Song S., Wang J., Wang J., Fan C. and Cao Y., “Flexible Carbon Nanotube−Polymer Composite Films with High Conductivity and Superhydrophobicity Made by Solution Process”, Nano Letters, 8(12): 4454–4458, (2008), doi: 10.1021/nl802411d.
  • [111] Xi J. and Jiang L., “Biomimic Superhydrophobic Surface with High Adhesive Forces”, Industrial & Engineering Chemistry Research, 47(17): 6354–6357, (2008), doi: 10.1021/ie071603n.
  • [112] Tseng P., Murray C., Kim D. and Di Carlo D., “Research highlights: printing the future of microfabrication”, Lab on a Chip, 14(9): 1491-1495, (2014), doi: 10.1039/C4LC90023E.
  • [113] Wang X., Cai X., Guo Q., Zhang T., Kobe B. and Yang J., “i3DP, a robust 3D printing approach enabling genetic post-printing surface modification”, Chemical Communications, 49(86): 10064-10066, (2013), doi: 10.1039/C3CC45817B.
  • [114] Bhushan B. and Caspers M., “An overview of additive manufacturing (3D printing) for microfabrication”, Microsystem Technologies, 23(4): 1117–1124, (2017), doi: 10.1007/s00542-017-3342-8.
  • [115] Balakrishnan H. K., Badar F., Doeven E. H., Novak J. I., Merenda A., Dumée L. F., Loy J. and Guijt R. M., “3D Printing: An Alternative Microfabrication Approach with Unprecedented Opportunities in Design”, Analytical Chemistry, 93(1): 350–366, (2020), doi: 10.1021/acs.analchem.0c04672.
  • [116] Jiang P., Ji Z., Wang X. and Zhou F., “Surface functionalization – a new functional dimension added to 3D printing”, Journal of Materials Chemistry C, 8(36): 12380–12411, (2020), doi: 10.1039/D0TC02850A.
  • [117] Kotz F., Risch P., Helmer D. and Rapp B. E., “High‐Performance Materials for 3D Printing in Chemical Synthesis Applications”, Advanced Materials, 31(26): 1805982(1-7), (2019), doi: 10.1002/adma.201805982.
  • [118] Kang B., Hyeon J. and So H., “Facile microfabrication of 3-dimensional (3D) hydrophobic polymer surfaces using 3D printing technology”, Applied Surface Science, 499: 143733(1-8), (2020), doi: 10.1016/j.apsusc.2019.143733.
  • [119] Xing R., Huang R., Qi W., Su R. and He Z., “Three-dimensionally printed bioinspired superhydrophobic PLA membrane for oil-water separation”, AIChE Journal, 64(10): 3700–3708, (2018), doi: 10.1002/aic.16347.
  • [120] Kang B., Sung J. and So H., “Realization of Superhydrophobic Surfaces Based on Three-Dimensional Printing Technology”, International Journal of Precision Engineering and Manufacturing-Green Technology, 8(1): 47–55, (2021), doi: 10.1007/s40684-019-00163-9.
  • [121] Sung J., Lee H. M., Yoon G. H., Bae S. and So H., “One-Step Fabrication of Superhydrophobic Surfaces with Wettability Gradient Using Three-Dimensional Printing”, International Journal of Precision Engineering and Manufacturing-Green Technology, (2022), doi: 10.1007/s40684-022-00418-y.
  • [122] Credi C., Levi M., Turri S. and Simeone G., “Stereolithography of perfluoropolyethers for the microfabrication of robust omniphobic surfaces”, Applied Surface Science, 404: 268–275, (2017), doi: 10.1016/j.apsusc.2017.01.208.
  • [123] Zhang Y., Yin M. J., Ouyang X., Zhang A. P. and Tam H. Y., “3D μ-printing of polytetrafluoroethylene microstructures: A route to superhydrophobic surfaces and devices”, Applied Materials Today, 19: 100580(1-9), (2020), doi: 10.1016/j.apmt.2020.100580.
  • [124] Aldhaleai A. and Tsai P. A., “Fabrication of Transparent and Microstructured Superhydrophobic Substrates Using Additive Manufacturing”, Langmuir, 37(1): 348–356, (2021), doi: 10.1021/acs.langmuir.0c02945.
  • [125] Bonilla-Cruz J., Sy J. A. C., Lara-Ceniceros T. E., Gaxiola-López J. C., García V., Basilia B. A. and Advincula R. C., “Superhydrophobic μ-pillars via simple and scalable SLA 3D-printing: the stair-case effect and their wetting models”, Soft Matter, 17(32): 7524–7531, (2021), doi: 10.1039/D1SM00655J.
  • [126] Mayoussi F., Doeven E. H., Kick A., Goralczyk A., Thomann Y., Risch P., Guijt R. M., Kotz F., Helmer D. and Rapp B. E., “Facile fabrication of micro-/nanostructured, superhydrophobic membranes with adjustable porosity by 3D printing”, Journal of Materials Chemistry A, 9(37): 21379–21386, (2021), doi: 10.1039/D1TA03352B.
  • [127] Yin Q., Guo Q., Wang Z., Chen Y., Duan H. and Cheng P., “3D-Printed Bioinspired Cassie–Baxter Wettability for Controllable Microdroplet Manipulation”, ACS Applied Materials & Interfaces, 13(1): 1979–1987, (2021), doi: 10.1021/acsami.0c18952.
  • [128] Yan C., Ji Z., Ma S., Wang X. and Zhou F., “3D Printing as Feasible Platform for On-Site Building Oil-Skimmer for Oil Collection from Spills”, Advanced Materials Interfaces, 3(13): 1600015(1-7), (2016), doi: 10.1002/admi.201600015.
  • [129] Graeber G., Martin Kieliger O. B., Schutzius T. M. and Poulikakos D., “3D-Printed Surface Architecture Enhancing Superhydrophobicity and Viscous Droplet Repellency”, ACS Applied Materials & Interfaces, 10(49): 43275–43281, (2018), doi: 10.1021/acsami.8b16893.
  • [130] Tricinci O., Terencio T., Mazzolai B., Pugno N. M., Greco F. and Mattoli V., “3D Micropatterned Surface Inspired by Salvinia molesta via Direct Laser Lithography”, ACS Applied Materials & Interfaces, 7(46): 25560–25567, (2015), doi: 10.1021/acsami.5b07722.
  • [131] Jin Z., Mei H., Yan Y., Pan L., Liu H., Xiao S. and Cheng L., “3D-printed controllable gradient pore superwetting structures for high temperature efficient oil-water separation”, Journal of Materiomics, 7(1): 8–18, (2021), doi: 10.1016/j.jmat.2020.07.002.
  • [132] Dong Z., Vuckovac M., Cui W., Zhou Q., Ras R. H. A. and Levkin P. A., “3D Printing of Superhydrophobic Objects with Bulk Nanostructure”, Advanced Materials, 33(45): 2106068(1-10), (2021), doi: 10.1002/adma.202106068.
  • [133] Farrell E. S., Ganonyan N., Cooperstein I., Moshkovitz M. Y., Amouyal Y., Avnir D. and Magdassi S., “3D-printing of ceramic aerogels by spatial photopolymerization”, Applied Materials Today, 24: 101083(1-8), (2021), doi: 10.1016/j.apmt.2021.101083.
  • [134] Yan D., Wang Y., Liu J., Zhao D., Ming P. and Song J., “Electrochemical 3D printing of superhydrophobic pillars with conical, cylindrical, and inverted conical shapes”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 625: 126869(1-9), (2021), doi: 10.1016/j.colsurfa.2021.126869.
  • [135] Chen Q., Zhao J., Ren J., Rong L., Cao P. F. and Advincula R. C., “3D Printed Multifunctional, Hyperelastic Silicone Rubber Foam”, Advanced Functional Materials, 29(23): 1900469(1-9), (2019), doi: 10.1002/adfm.201900469.
  • [136] Yang Y., Li X., Zheng X., Chen Z., Zhou Q. and Chen Y., “3D‐Printed Biomimetic Super‐Hydrophobic Structure for Microdroplet Manipulation and Oil/Water Separation”, Advanced Materials, 30(9): 1704912(1-11), (2017), doi: 10.1002/adma.201704912.
  • [137] Lv J., Gong Z., He Z., Yang J., Chen Y., Tang C., Liu Y., Fan M. and Lau W. M., “3D printing of a mechanically durable superhydrophobic porous membrane for oil–water separation”, Journal of Materials Chemistry A, 5(24): 12435–12444, (2017), doi: 10.1039/C7TA02202F.
  • [138] Barahman M. and Lyons A. M., “Ratchetlike Slip Angle Anisotropy on Printed Superhydrophobic Surfaces”, Langmuir, 27(16): 9902–9909, (2011), doi: 10.1021/la201222a.
  • [139] Zhang Y., Yin M., Xia O., Zhang A. P. and Tam H. Y., “Optical 3D μ-printing of polytetrafluoroethylene (PTFE) microstructures”, 2018 IEEE International Conference on Micro Electro Mechanical Systems, Belfast, UK, 37-40, (2018), doi: 10.1109/MEMSYS.2018.8346475.
  • [140] Gao N. and Yan Y., “Characterisation of surface wettability based on nanoparticles”, Nanoscale, 4(7): 2202-2218, (2012), doi: 10.1039/C2NR11736C.
  • [141] Asthana A., Maitra T., Büchel R., Tiwari M. K. and Poulikakos D., “Multifunctional Superhydrophobic Polymer/Carbon Nanocomposites: Graphene, Carbon Nanotubes, or Carbon Black?”, ACS Applied Materials & Interfaces, 6(11): 8859–8867, (2014), doi: 10.1021/am501649w.
  • [142] Liu H., Zhai J. and Jiang L., “Wetting and anti-wetting on aligned carbon nanotube films”, Soft Matter, 2(10): 811-821, (2006), doi: 10.1039/B606654B.
  • [143] Yang J., Zhang Z., Men X., Xu X. and Zhu X., “Reversible Superhydrophobicity to Superhydrophilicity Switching of a Carbon Nanotube Film via Alternation of UV Irradiation and Dark Storage”, Langmuir, 26(12): 10198–10202, (2010), doi: 10.1021/la100355n.
  • [144] Jung Y. C. and Bhushan B., “Mechanically Durable Carbon Nanotube−Composite Hierarchical Structures with Superhydrophobicity, Self-Cleaning, and Low-Drag”, ACS Nano, 3(12): 4155–4163, (2009), doi: 10.1021/nn901509r.
  • [145] Song H. J., Shen X. Q. and Meng X. F., “Superhydrophobic Surfaces Produced by Carbon Nanotube Modified Polystyrene Composite Coating”, Journal of Dispersion Science and Technology, 31(11): 1465–1468, (2010), doi: 10.1080/01932690903269628.
  • [146] Han J. T., Kim S. Y., Woo J. S. and Lee G. W., “Transparent, Conductive, and Superhydrophobic Films from Stabilized Carbon Nanotube/Silane Sol Mixture Solution”, Advanced Materials, 20(19): 3724–3727, (2008), doi: 10.1002/adma.200800239.
  • [147] Kim H. K. and Cho Y. S., “Fabrication of a superhydrophobic surface via spraying with polystyrene and multi-walled carbon nanotubes”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 465: 77–86, (2015), doi: 10.1016/j.colsurfa.2014.10.029.
  • [148] Wang K., Hu N. X., Xu G. and Qi Y., “Stable superhydrophobic composite coatings made from an aqueous dispersion of carbon nanotubes and a fluoropolymer”, Carbon, 49(5): 1769–1774, (2011), doi: 10.1016/j.carbon.2010.12.063.
  • [149] Yang J., Zhang Z., Men X. and Xu X., “Fabrication of stable, transparent and superhydrophobic nanocomposite films with polystyrene functionalized carbon nanotubes”, Applied Surface Science, 255(22): 9244–9247, (2009), doi: 10.1016/j.apsusc.2009.07.010.
  • [150] Zhang F., Qian H., Wang L., Wang Z., Du C., Li X. and Zhang D., “Superhydrophobic carbon nanotubes/epoxy nanocomposite coating by facile one-step spraying”, Surface and Coatings Technology, 341: 15–23, (2018), doi: 10.1016/j.surfcoat.2018.01.045.
  • [151] Zhang H. F., Teo M. K. and Yang C., “Superhydrophobic carbon nanotube/polydimethylsiloxane composite coatings”, Materials Science and Technology, 31(14): 1745–1748, (2015), doi: 10.1179/1743284714Y.0000000752.
  • [152] Zhu X., Zhang Z., Ge B., Men X. and Zhou X., “Fabrication of a superhydrophobic carbon nanotube coating with good reusability and easy repairability”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 444: 252–256, (2014), doi: 10.1016/j.colsurfa.2013.12.066.
  • [153] Wang Z., Lopez C., Hirsa A. and Koratkar N., “Impact dynamics and rebound of water droplets on superhydrophobic carbon nanotube arrays”, Applied Physics Letters, 91(2): 023105(1-3), (2007), doi: 10.1063/1.2756296.
  • [154] Chen C. H., Cai Q., Tsai C., Chen C. L., Xiong G., Yu Y. and Ren Z., “Dropwise condensation on superhydrophobic surfaces with two-tier roughness”, Applied Physics Letters, 90(17): 173108(1-3), (2007), doi: 10.1063/1.2731434.
  • [155] Wang Z., Koratkar N., Ci L. and Ajayan P. M., “Combined micro-/nanoscale surface roughness for enhanced hydrophobic stability in carbon nanotube arrays”, Applied Physics Letters, 90(14): 143117(1-3), (2007), doi: 10.1063/1.2720761.
  • [156] Huang L., Lau S. P., Yang H. Y., Leong E. S. P., Yu S. F. and Prawer S., “Stable Superhydrophobic Surface via Carbon Nanotubes Coated with a ZnO Thin Film”, The Journal of Physical Chemistry B, 109(16): 7746–7748, (2005), doi: 10.1021/jp046549s.
  • [157] Lau K. K. S., Bico J., Teo K. B. K., Chhowalla M., Amaratunga G. A. J., Milne W. I., McKinley G. H. and Gleason K. K., “Superhydrophobic Carbon Nanotube Forests”, Nano Letters, 3(12): 1701–1705, (2003), doi: 10.1021/nl034704t.
  • [158] Joseph P., Cottin-Bizonne C., Benoît J. M., Ybert C., Journet C., Tabeling P. and Bocquet L., “Slippage of Water Past Superhydrophobic Carbon Nanotube Forests in Microchannels”, Physical Review Letters, 97(15):156104(1-4) (2006), doi: 10.1103/PhysRevLett.97.156104.
  • [159] Hong Y. C. and Uhm H. S., “Superhydrophobicity of a material made from multiwalled carbon nanotubes”, Applied Physics Letters, 88(24): 244101(1-3), (2006), doi: 10.1063/1.2210449.
  • [160] Li S., Li H., Wang X., Song Y., Liu Y., Jiang L. and Zhu D., “Super-Hydrophobicity of Large-Area Honeycomb-Like Aligned Carbon Nanotubes”, The Journal of Physical Chemistry B, 106(36): 9274–9276, (2002), doi: 10.1021/jp0209401.
  • [161] Meng L. Y. and Park S. J., “Effect of fluorination of carbon nanotubes on superhydrophobic properties of fluoro-based films”, Journal of Colloid and Interface Science, 342(2): 559–563, (2010), doi: 10.1016/j.jcis.2009.10.022.
  • [162] Zhao L., Xu W. H., Liu J. Q., Liu W. L., Yao J. S., Li M., Wang X. Q. and Wu Y. Z., “Superhydrophobic surface fabricated by modifying silica coated multiwalled carbon nanotubes composites”, Journal of Sol-Gel Science and Technology, 69(1): 107–113, (2013), doi: 10.1007/s10971-013-3192-5.
  • [163] Zhu L., Xiu Y., Xu J., Tamirisa P. A., Hess D. W. and Wong C. P., “Superhydrophobicity on Two-Tier Rough Surfaces Fabricated by Controlled Growth of Aligned Carbon Nanotube Arrays Coated with Fluorocarbon”, Langmuir, 21(24):11208-11212, (2005), doi: 10.1021/la051410+.
  • [164] Han Z. J., Tay B. K., Shakerzadeh M. and Ostrikov K., “Superhydrophobic amorphous carbon/carbon nanotube nanocomposites”, Applied Physics Letters, 94(22): 223106(1-3), (2009), doi: 10.1063/1.3148667.
  • [165] Sunden E., Moon J. K., Wong C. P., King W. P. and Graham S., “Microwave assisted patterning of vertically aligned carbon nanotubes onto polymer substrates”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 24(4): 1947-1950, (2006), doi: 10.1116/1.2221320.
  • [166] Lin J., Wang X., Ding B., Yu J., Sun G. and Wang M., “Biomimicry via Electrospinning”, Critical Reviews in Solid State and Materials Sciences, 37(2): 94–114, (2012), doi: 10.1080/10408436.2011.627096.
  • [167] Zhou Z. and Wu X. F., “Electrospinning superhydrophobic–superoleophilic fibrous PVDF membranes for high-efficiency water–oil separation”, Materials Letters, 160: 423–427, (2015), doi: 10.1016/j.matlet.2015.08.003.
  • [168] Lee M. S., Lee T. S. and Park W. H., “Highly hydrophobic nanofibrous surfaces genearated by poly(vinylidene fluoride)”, Fibers and Polymers, 14(8): 1271–1275, (2013), doi: 10.1007/s12221-013-1271-4.
  • [169] Cui M., Xu C., Shen Y., Tian H., Feng H. and Li J., “Electrospinning superhydrophobic nanofibrous poly(vinylidene fluoride)/stearic acid coatings with excellent corrosion resistance”, Thin Solid Films, 657: 88–94, (2018), doi: 10.1016/j.tsf.2018.05.008.
  • [170] Liao Y., Wang R. and Fane A. G., “Engineering superhydrophobic surface on poly(vinylidene fluoride) nanofiber membranes for direct contact membrane distillation”, Journal of Membrane Science, 440: 77–87, (2013), doi: 10.1016/j.memsci.2013.04.006.
  • [171] Wang S., Li Y., Fei X., Sun M., Zhang C., Li Y., Yang Q. and Hong X., “Preparation of a durable superhydrophobic membrane by electrospinning poly (vinylidene fluoride) (PVDF) mixed with epoxy–siloxane modified SiO2 nanoparticles: A possible route to superhydrophobic surfaces with low water sliding angle and high water contact angle”, Journal of Colloid and Interface Science, 359(2): 380–388, (2011), doi: 10.1016/j.jcis.2011.04.004.
  • [172] Liu Z., Wang H., Wang E., Zhang X., Yuan R. and Zhu Y., “Superhydrophobic poly(vinylidene fluoride) membranes with controllable structure and tunable wettability prepared by one-step electrospinning”, Polymer, 82: 105–113, (2016), doi: 10.1016/j.polymer.2015.11.045.
  • [173] Chen Y. and Kim H., “Preparation of superhydrophobic membranes by electrospinning of fluorinated silane functionalized poly(vinylidene fluoride)”, Applied Surface Science, 255(15): 7073–7077, (2009), doi: 10.1016/j.apsusc.2009.03.043.
  • [174] Su C., Li Y., Dai Y., Gao F., Tang K. and Cao H., “Fabrication of three-dimensional superhydrophobic membranes with high porosity via simultaneous electrospraying and electrospinning”, Materials Letters, 170: 67–71, (2016), doi: 10.1016/j.matlet.2016.01.133.
  • [175] Zhan N., Li Y., Zhang C., Song Y., Wang H., Sun L., Yang Q. and Hong X., “A novel multinozzle electrospinning process for preparing superhydrophobic PS films with controllable bead-on-string/microfiber morphology”, Journal of Colloid and Interface Science, 345(2): 491–495, (2010), doi: 10.1016/j.jcis.2010.01.051.
  • [176] Xue Y., Wang H., Yu D., Feng L., Dai L., Wang X. and Lin T., “Superhydrophobic electrospun POSS-PMMA copolymer fibres with highly ordered nanofibrillar and surface structures”, Chemical Communications, 42: 6418-6420, (2009), doi: 10.1039/B911509A.
  • [177] Zhu Y., Zhang J., Zheng Y., Huang Z., Feng L. and Jiang L., “Stable, Superhydrophobic, and Conductive Polyaniline/Polystyrene Films for Corrosive Environments”, Advanced Functional Materials, 16(4): 568–574, (2006), doi: 10.1002/adfm.200500624.
  • [178] Jiang L., Zhao Y. and Zhai J., “A Lotus-Leaf-like Superhydrophobic Surface: A Porous Microsphere/Nanofiber Composite Film Prepared by Electrohydrodynamics”, Angewandte Chemie International Edition, 43(33): 4338–4341, (2004), doi: 10.1002/anie.200460333.
  • [179] Kang M., Jung R., Kim H. S. and Jin H. J., “Preparation of superhydrophobic polystyrene membranes by electrospinning”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313–314: 411–414, (2008), doi: 10.1016/j.colsurfa.2007.04.122.
  • [180] Acatay K., Simsek E., Ow-Yang C. and Menceloglu Y. Z., “Tunable, Superhydrophobically Stable Polymeric Surfaces by Electrospinning”, Angewandte Chemie International Edition, 43(39): 5210–5213, (2004), doi: 10.1002/anie.200461092.
  • [181] Heng L., Wang X., Dong Y., Zhai J., Tang B. Z., Wei T. and Jiang L., “Bio-Inspired Fabrication of Lotus Leaf Like Membranes as Fluorescent Sensing Materials”, Chemistry – an Asian Journal, 3(6): 1041–1045, (2008), doi: 10.1002/asia.200700394.
  • [182] Zhao F., Wang X., Ding B., Lin J., Hu J., Si Y., Yu J. and Sun G., “Nanoparticle decorated fibrous silica membranes exhibiting biomimetic superhydrophobicity and highly flexible properties”, RSC Advances, 1(8): 1482-1488, (2011), doi: 10.1039/C1RA00605C.
  • [183] Wu H., Zhang R., Sun Y., Lin D., Sun Z., Pan W. and Downs P., “Biomimetic nanofiber patterns with controlled wettability”, Soft Matter, 4(12): 2429-2433, (2008), doi: 10.1039/B805570J.
  • [184] Lin J., Cai Y., Wang X., Ding B., Yu J. and Wang M., “Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf”, Nanoscale, 3(3): 1258-1262, (2011), doi: 10.1039/C0NR00812E.
  • [185] Li X., Ding B., Lin J., Yu J. and Sun G., “Enhanced Mechanical Properties of Superhydrophobic Microfibrous Polystyrene Mats via Polyamide 6 Nanofibers”, The Journal of Physical Chemistry C, 113(47): 20452–20457, (2009), doi: 10.1021/jp9076933.
  • [186] Miyauchi Y., Ding B. and Shiratori S., “Fabrication of a silver-ragwort-leaf-like super-hydrophobic micro/nanoporous fibrous mat surface by electrospinning”, Nanotechnology, 17(20): 5151–5156, (2006), doi: 10.1088/0957-4484/17/20/019.
  • [187] Gong G., Wu J., Liu J., Sun N., Zhao Y. and Jiang L., “Bio-inspired adhesive superhydrophobic polyimide mat with high thermal stability”, Journal of Materials Chemistry, 22(17): 8257-8262, (2012), doi: 10.1039/C2JM16503A.
  • [188] Yoon H., Park J. H. and Kim G. H., “A Superhydrophobic Surface Fabricated by an Electrostatic Process”, Macromolecular Rapid Communications, 31(16): 1435–1439, (2010), doi: 10.1002/marc.201000131.
  • [189] Lee J. K. Y., Chen N., Peng S., Li L., Tian L., Thakor N. and Ramakrishna S., “Polymer-based composites by electrospinning: Preparation & functionalization with nanocarbons”, Progress in Polymer Science, 86: 40–84, (2018), doi: 10.1016/j.progpolymsci.2018.07.002.
  • [190] Begum S., Kausar A., Ullah H. and Siddiq M., “Potential of Polyvinylidene Fluoride/Carbon Nanotube Composite in Energy, Electronics, and Membrane Technology: An Overview”, Polymer-Plastics Technology and Engineering, 55(18): 1949–1970, (2016), doi: 10.1080/03602559.2016.1185630.
  • [191] Wu T., Pan Y. and Li L., “Fabrication of superhydrophobic hybrids from multiwalled carbon nanotubes and poly(vinylidene fluoride)”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384(1–3): 47–52, (2011), doi: 10.1016/j.colsurfa.2011.03.015.
  • [192] Yu Y., Chen H., Liu Y., Craig V. S. J., Li L. H., Chen Y. and Tricoli A., “Porous carbon nanotube/polyvinylidene fluoride composite material: Superhydrophobicity/superoleophilicity and tunability of electrical conductivity”, Polymer, 55(22): 5616–5622, (2014), doi: 10.1016/j.polymer.2014.08.062.
  • [193] Chakradhar R. P. S., Prasad G., Bera P. and Anandan C., “Stable superhydrophobic coatings using PVDF–MWCNT nanocomposite”, Applied Surface Science, 301: 208–215, (2014), doi: 10.1016/j.apsusc.2014.02.044.
  • [194] Liu Z. H., Pan C. T., Lin L. W. and Lai H. W., “Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning”, Sensors and Actuators A: Physical, 193: 13–24, (2013), doi: 10.1016/j.sna.2013.01.007.
  • [195] Ahn Y., Lim J. Y., Hong S. M., Lee J., Ha J., Choi H. J. and Seo Y., “Enhanced Piezoelectric Properties of Electrospun Poly(vinylidene fluoride)/Multiwalled Carbon Nanotube Composites Due to High β-Phase Formation in Poly(vinylidene fluoride)”, The Journal of Physical Chemistry C, 117(22): 11791–11799, (2013), doi: 10.1021/jp4011026.
  • [196] Huang S., Yee W. A., Tjiu W. C., Liu Y., Kotaki M., Boey Y. C. F., Ma J., Liu T. and Lu X, “Electrospinning of Polyvinylidene Difluoride with Carbon Nanotubes: Synergistic Effects of Extensional Force and Interfacial Interaction on Crystalline Structures”, Langmuir, 24(23): 13621–13626, (2008), doi: 10.1021/la8024183.
  • [197] Seoul C., Kim Y. T. and Baek C. K., “Electrospinning of poly(vinylidene fluoride)/dimethylformamide solutions with carbon nanotubes”, Journal of Polymer Science Part B: Polymer Physics, 41(13): 1572–1577, (2003), doi: 10.1002/polb.10511.
  • [198] Wang S. H., Wan Y., Sun B., Liu L. Z. and Xu W., “Mechanical and electrical properties of electrospun PVDF/MWCNT ultrafine fibers using rotating collector”, Nanoscale Research Letters, 9(1): 522(1-7), (2014), doi: 10.1186/1556-276X-9-522.
  • [199] Liu Z. H., Pan C. T., Lin L. W., Li H. W., Ke C. A., Huang J. C. and Wang P. S., “Mechanical properties of piezoelectric PVDF/MWCNT fibers prepared by flat/hollow cylindrical near-field electrospinning process”, The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Suzhou, China, 707-710, (2013), doi: 10.1109/NEMS.2013.6559827.
  • [200] Liu X., Xu S., Kuang X. and Wang X., “Ultra-long MWCNTs highly oriented in electrospun PVDF/MWCNT composite nanofibers with enhanced β phase”, RSC Advances, 6(108): 106690–106696, (2016), doi: 10.1039/C6RA24195F.