PET Lif Takviyeli Farklı Puzolanik İkameli Çimento Harçlarının Mekanik Özellikleri

Bu çalışmada, çimento harçlarında, Uçucu kül (UK), Yüksek Fırın Cürufu (YFC) ve Polietilen tereftalat (PET) lif takviyesi kullanarak mekanik ve fiziksel özellikler incelenmiştir. Bu çalışmanın ilk aşamasında PET lif takviyesinin sertleşmiş harç özeliklerine etkileri incelenmiştir. Bunun için ilk olarak bağlayıcı oran ağırlığının %0.5 %1, %1.5 %2 ve %3 PET lif ilave edilmiş ve en yüksek dayanımını veren lif takviyesi %1 olarak belirlenmiştir. %1 PET lif ilave edildiğinde eğilme dayanımının %25,79 oranında arttığı gözlemlenmiştir. Daha sonra %1 PET lif sabit tutularak çimento içerisine ağırlıkça %0, %5, %10, %15, %20, %25 ve %30 UK ve YFC ikame edilerek kompozit numuneler üretilmiştir. Yapılan çalışma sonucunda, en yüksek eğilme dayanımının %1 PET lif takviyeli, %10 UK ve YFC ikameli çimento harç karışımlarında elde edildiği görülmüştür. Harç numuneleri üzerinde, eğilme, basınç dayanımı ve ultrasonik ses hızı ölçümü deneyleri gerçekleştirilmiştir.

Mechanical Properties of PET Fiber Reinforced Cement Mortars with Different Pozzolanic Substitutes

In this study, mechanical and physical properties of cement mortars were investigated by using fiber reinforcement of Fly ash (FA), Blast Furnace Slag (BFS) and Polyethylene terephthalate (PET). In the first stage of this study, the effects of PET fiber reinforcement on the cured mortar properties were investigated. For this, 0.5% 1%, 1.5% 2% and 3% PET fiber were added by weight of the binder ratio and the fiber reinforcement giving the highest strength was determined as 1%. It was observed that flexural strength increased by 25.79% when 1% PET fiber was added. Then, by keeping 1% PET fiber constant, composite samples were produced by substituting 0%, 5%, 10%, 15%, 20%, 25% and 30% FA and BFS into cement by weight. At the end of the study; It was observed that the highest flexural strength was 1% PET fiber reinforced, 10% FA and BFS substituted cement mortar mixtures. Flexural, compressive strength and ultrasonic pulse velocity measurements were carried out on the mortar samples.

___

  • [1] Yan, H., Sun, W., & Chen, H. (1999). The effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete. Cement and Concrete Research, 29(3), 423–426.
  • [2] Kayali, O., Haque, M. N., & Zhu, B. (2003). Some characteristics of high strength fiber reinforced lightweight aggregate concrete. Cement and Concrete Composites, 25(2), 207–213.
  • [3] Brandt, A. M. (2008). Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite Structures, 86(1–3), 3–9.
  • [4] Köksal, F., Altun, F., Yiǧit, I., & Şahin, Y. (2008). Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes. Construction and Building Materials, 22(8), 1874–1880.
  • [5] Shannag, M. J. (2000). High strength concrete containing natural pozzolan and silica fume. Cement and Concrete Composites, 22(6), 399–406. https://doi.org/10.1016/S0958-9465(00)00037-8
  • [6] Banthia, N., Yan, C., & Sakai, K. (1998). Impact resistance of fiber reinforced concrete at subnorma temperatures. Cement and Concrete Composites, 20(5), 393–404. https://doi.org/10.1016/S0958- 9465(98)00015-8
  • [7] Toutanji, H., McNeil, S., & Bayasi, Z. (1998). Chloride permeability and impact resistance of polypropylene-fiber-reinforced silica fume concrete. Cement and Concrete Research, 28(7), 961–968. https://doi.org/10.1016/S0008-8846(98)00073-8
  • [8] Borg, R. P., Baldacchino, O., & Ferrara, L. (2016). Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete. Construction and Building Materials, 108, 29–47.
  • [9] Ochi, T., Okubo, S., & Fukui, K. (2007). Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cement and Concrete Composites, 29(6), 448–455.
  • [10] Fraternali, F., Spadea, S., & Berardi, V. P. (2014). Effects of recycled PET fibres on the mechanical properties and seawater curing of Portland cement-based concretes. Construction and Building Materials, 61, 293–302. https://doi.org/10.1016/J.CONBUILDMAT.2014.03.019
  • [11] Nili, M., & Afroughsabet, V. (2010). The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Construction and Building Materials, 24(6), 927– 933. https://doi.org/10.1016/J.CONBUILDMAT.2009.11.025
  • [12] Alani, A. M., & Beckett, D. (2013). Mechanical properties of a large scale synthetic fibre reinforced concrete ground slab. Construction and Building Materials, 41, 335–344.
  • [13] Hsie, M., Tu, C., & Song, P. S. (2008). Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Materials Science and Engineering: A, 494(1–2), 153–157.
  • [14] Bošnjak, J., Ožbolt, J., & Hahn, R. (2013). Permeability measurement on high strength concrete without and with polypropylene fibers at elevated temperatures using a new test setup. Cement and Concrete Research, 53, 104–111. https://doi.org/10.1016/J.CEMCONRES.2013.06.005
  • [15] Rostami, M., & Behfarnia, K. (2017). The effect of silica fume on durability of alkali activated slag concrete. Construction and Building Materials, 134, 262–268.
  • [16] Afroughsabet, V., & Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and Building Materials, 94, 73–82.
  • [17] Richardson, A.E., Coventry, K., Landless, S. Synthetic and steel fibers in concrete with regard to equal toughness. Structural Survey, (2010), 28: p. 355-369.
  • [18] Sümer, M. Uçucu kül atıklarının beton üretiminde değerlendirilmesi, I. Ulusal İnşaat & Çevre Sempozyumu, Salihli, Bildiriler Kitabı, (1994), p. 179-185.
  • [19] Koca, C. Yüksek performanslı beton üretiminde mikrosilis, curuf, klinker karışımı çimento kullanımı. 4. Ulusal Beton Kongresi Beton Teknolojisinde Mineral ve Kimyasal Katkılar Bildiri Kitabı, TMMOB İnşaat Mühendisleri Odası, İstanbul, (1996), p.381-394.
  • [20] Şengül, Ü. Uçucu kül ve çevresel etkileri. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, (2001), 7(1): p. 89-104.
  • [21] Zhang, P., Li, Q. Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume. Composites: Part B, (2013), 45(1): p. 1587–1594.
  • [22] Ramezanianpour, A.A., Esmaeili M., Ghahari S.A., Najafi M.H. Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers. Construction and Building Materials, (2013), 44: p. 411-418.
  • [23] Yaprak, H., Şimşek, O., Öneş, A. Cam ve çelik liflerin bazı beton özelliklerine etkisi. Politeknik Dergisi, (2004), 7(4): p. 353-358.
  • [24] Kim, S.B., Yi, N.H., Kim, H.Y., Kim, J.H.J., Song, Y.C. Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement and Concrete Composites, (2010), 32(3): p. 232–240.
  • [25] Foti, D. Preliminary analysis of concrete reinforced with waste bottles PET fibers. Construction and Building Materials, (2011), 25(4): p. 1906–1915.
  • [26] TS EN 197-1: Cement–Part 1: Composition, specification sand conformity criteria for common cements. Turkish Standard Institution, Ankara, (2012).
  • [27] Tayyar A. E. & Üstün S. Geri Kazanılmış Pet'in Kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 2010; 16(1): 53-62.
  • [28] TS EN 196-1: Methods of testing cement–Part 1: Determination of strength. Turkish Standard Institution, Ankara, (2016).
  • [29] ASTM C 597: Standard Test Method for Pulse Velocity Through Concrete, Annual Book of ASTM Standard, (Febuary 2003).
  • [30] Fanella D.A. and Naaman A.E., "Stress-Strain Properties of Fiber Reinforced Concrete in Compression", Journal of ACI Materials, 82 (4): 475 – 483, (1985)
  • [31] Khaloo A.R. and Afshari M., "Flexural Behavior of Small Steel Fiber Reinforced Concrete Slabs", Cement and Concrete Composites 27: 141–149, (2005).
  • [32] Uygunoğlu, T., "Investigation of microstructure and flexural behavior of steel-fiber reinforced concrete", Materials and Structures, 41(8): 1441-1449, (2008).
  • [33] Erdoğan T.Y., "Beton", ODTÜ Geliştirme Vakfı Yayn. ve İletişim Şti, 130-160, Ankara, Mayıs, (2003).
  • [34] Felekoğlu, B. (2009). Yüksek performanslı beton tasarımı, Doktora Tezi, Dokuz Eylül Üniversitesi İnşaat Fakültesi, İzmir
  • [35] Atahan N.A., Pekmezci B.Y., Tuncel E.Y. ‘Behavior of PVA fiber-reinforced cementitious composites under static and ımpact flexural effects’, Journal of Materials in Civil Engineering, 25(10): 1438-1445, (2013).
  • [36] Liu J., Qiu Q., Xing F., Pan D. Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete. Materials, 7, 4282-4296, 2014.
  • [37] Ikram M., 2016. High volume fly ashstrength development in concrete: a review. International Journal of Advanced Structures and Geotechnical Engineering, 5 (2), 52-57.
  • [38] Kim J.H., Lee J.J., Yoon J.Y., Lyoo W.S., Kotek R., (2001), “Alkaline Depolymerization of Poly(trimethylene terephthalate)”, Journal of Applied Polymer Science, Vol. 82, 99–107
  • [39] Günay, K. (2018). Antibakteriyel Özelliğe Sahip Modifiye Edilmiş Poli(Etilen Teraftalat) Liflerin Sentezi ve Karakterizasyonu
  • [40] Indian Standard IS 13311-1, Method of Non-destructive testing of concrete, Part 1: Ultrasonic pulse velocity [CED 2: Cement and Concrete], Bureau of Indian Standards Manak Bhavan, 9 Bahadur Shah Zafar Maro New Delhi 110002, (1992).