AISI P20 Çeliğinin İşlenmesinde Kesme Kuvvetinin Deneysel Ve Nümerik Analizi

Bu çalışma, AISI P20 çeliğinin sementit karbür kesici takımla tornalama işleminde oluşan kesme kuvvetlerinin deneysel olarak ölçülmesi ve nümerik analizi olmak üzere iki kısımdan oluşmaktadır. Deneysel çalışmada, farklı seviyelerde kesme parametreleri (kesme hızı, ilerleme miktarı ve kesme derinliği) kullanılarak silindirik tornalama işlemi yapılmıştır. Kesme kuvvetlerinin ölçülmesinde, Kistler 9257B tipi dinanometre ve ekipmanları kullanılmıştır. Kesme kuvveti için nümerik analizler, sonlu elemanlar yöntemine dayalı çözümleme yapan DEFORM 3D simülasyon programıyla gerçekleştirilmiştir. Çalışma sonucunda, deneysel olarak ölçülen kesme kuvveti ile simülasyon sonucunda elde edilen kuvvet değerleri arasında ortalama %8’lik bir fark olduğu belirlenmiştir.

___

  • DeGarmo E.P., Black, J.T., Kohser R.A., Materials and Processes in Manufacturing, Prentice-Hall Inc., New Jersey, 533-600, 2013.
  • Ceretti E., Lazzaroni C., Menegardo L., Altan T., “Turning simulations using a three-dimensional FEM code”, Journal of Materials Processing Technology, 98 (1), 99-103, 2000.
  • Bil H., Kılıç S.E., Tekkaya A.E., “A comparison of orthogonal cutting data from experiments with three different finite element models”, International Journal of Machine Tools and Manufacture, 44 (9), 933-944, 2004.
  • Özel T. and Zeren E., “Finite element method simulation of machining of AISI 1045 steel with a round edge cutting tool”, Proceedings of 8th CIRP International Workshop on Modeling of Machining Operations, Germany, 533-542, 2005.
  • Özel T., “The influence of friction models on finite element simulations of machining”, International Journal of Machine Tools and Manufacture, 46, 518, 2006.
  • Uhlmann E., Schulenburg M.G., Zettier, R., “Finite element modeling and cutting simulation of Inconel 718”, CIRP Annals-Manufacturing Technology, 56 (1), 61-64, 2007.
  • Kurt A., “Modelling of the cutting tool stresses in machining of Inconel 718 using artificial neural networks”, Expert Systems with Applications, 36 (6), 9645-9657, 2009.
  • Özel T., “Computational modelling of 3D turning: Influence of edge micro-geometry on forces, stresses, friction and tool wear in PCBN tooling”, Journal of Materials Processing Technology, 209 (11), 5167-5177, 2009.
  • Budak E. and Ozlu E., “Development of a thermomechanical cutting process model for machining process simulations”, CIRP Annals-Manufacturing Technology, 57 (1), 97-100, 2008.
  • Attanasio A., Ceretti E., Rizzuti S., Umbrello D., Micari F., “3D finite element analysis of tool wear in machining”, CIRP Annals-Manufacturing Technology, 57, 61, 2008.
  • Ucun İ. and Aslantaş K., “Numerical simulation of orthogonal machining process using multilayer and single-layer coated tools”, International Journal of Advanced Manufacturing Technology, 54, 899, 2011.
  • Gök K., Türkes E., Neseli S., Saglam H., Gök, A. “The validation as experimental and numerical of the values of thrust force and torque in drilling process”, Journal of Engineering Science and Technology Review, 6 (3), 93–99, 2013.
  • Sekmen M., Kurt A., Seker, U., “Talaş kırıcı formu ve talaş kırıcı açısının kesme kuvvetleri ve gerilmeler üzerine etkisi”, 4. Ulusal Talaşlı Imalat Sempozyumu, Kuşadası, 441-456, 07-09 Kasım 2013.
  • Gök K., “Development of three-dimensional finite element model to calculate the turning processing parameters in turning operations”, Measurement, 75, 57–68, 2015.
  • Yardımcıoğlu B. ve Kılıçarslan C., “Sürtünme modellerinin ve katsayılarının talaşlı imalatın sonlu elemanlar benzetimine etkisi”, Mühendis ve Makine, 52, 612, 60-65 2011.
  • Özel T. and Altan T., “Determination of workpiece flow stress and friction at the chip–tool contact for high-speed cutting”, International Journal of Machine Tools and Manufacture, 40, 133–152, 2000.
  • Lorentzon J., Jarvstrat N., Josefson B.L., “Modelling chip formation of alloy 718, Journal of Materials Processing Technology, 209, 4645-4653, 2009.
  • Shatla M., Kerk C., Altan T., “Process modeling in machining. Part I: determination of flow stress data”, International Journal of Machine Tools and Manufacture, 41, 1511–1534, 2001.