A Wide Frequency Range C-V and G-V Characteristics Study in Schottky Contacts with a BODIPY-Pyridine Organic Interface

Bu çalışmada organik arayüzey tabakalı Schottky diyot yapısı üretimi ve kapasite-iletkenlik-voltaj ölçümlerine frekans etkisi amaçlandı. Bu kapsamda, 350 μm kalınlığında, (100) yönelimli, 2 inç çapında, 1-20 Ω.cm özdirençli, fosfor katkılı n tipi bir silisyum yarıiletken kristali kullanıldı. Bu kristalin üzerine “(E)-5,5-difloro-1,3,7,9-tetrametil-10-fenil-2-(2-(piridin-2-yl)vinil)-5H-54,64-dipirol [1,2-c:2',1-'f][1,3,2] diazaborinin” (BODIPY-Pyridine) ince filmi spin kaplama tekniği kullanılarak kaplandı. Termal buharlaştırma sistemi kullanılarak indiyum (In) ve altın (Au) buharlaştırılmasıyla omik ve doğrultucu kontaklar kaplandı ve Au/BODIPY-Pyridine/n-Si/In Schottky diyotu üretildi. Bu yapının karanlıkta farklı frekanslarda kapasite-voltaj (C-V) ve iletkenlik-voltaj (G-V) ölçümleri alındı. Frekansa bağlı olarak seri direnç (Rs) ve arayüzey durum yoğunluğu (Nss) değerleri sırasıyla iletkenlik ve Hill-Coleman yöntemi kullanılarak belirlendi.

A Wide Frequency Range C-V and G-V Characteristics Study in Schottky Contacts with a BODIPY-Pyridine Organic Interface

In this study, it was aimed to produce an organic interface layered Schottky diode structure and frequency effect on capacitance-conductance-voltage measurements. In this context, phosphor doped n-type Si single crystal has been used as a semiconductor substrate with a 1-20 Ω.cm resistivity, (100) surface oriention, 2 inches in diameter and 350 μm thickness. The (E)-5,5-difluoro-1,3,7,9-tetramethyl-10-phenyl-2-(2-(pyridin-2-yl)vinyl)-5H-54,64-dipyrrolo [1,2-c:2',1'-f] [1,3,2] diazaborinine (BODIPY-Pyridine) thin film was coated on n-Si using the spin coating technique. Ohmic and rectifier contacts were coated by evaporation of indium (In) and gold (Au) using a thermal evaporation system and Au/ BODIPY-Pyridine/n-Si/In Schottky diode was fabricated. Capacitance-voltage (C-V) and conductance-voltage (G-V) measurements of this structure were gained at different frequencies in the dark. Contingent on the frequency, the series resistance (Rs) and the interface state density (Nss) values were identified by using the conductance and Hill-Coleman method, respectively.

___

  • [1] Rhoderick E.H. and Williams R.H. Metal-Semiconductor Contacts. 1988, Oxford Clarendon Press
  • [2] Sze S.M. and Ng K.K. Physics of Semiconductor Devices. 2007, Hoboken, N.J.: Wiley-Interscience.
  • [3] Akgül F.D., Eymur S., Akın Ü., et al. Investigation of Schottky emission and space charge limited current (SCLC) in Au/SnO2/n-Si Schottky diode with gamma-ray irradiation. Journal of Materials Science: Materials in Electronics, 2021. 32(12): 15857-15863.
  • [4] Ho P.S., Yang E.S., Evans H.L., and Wu X. Electronic states at silicide-silicon interfaces. Physical Review Letters, 1986. 56(2): 177-180.
  • [5] Sze S.M. Physics of semiconductor devices /2nd edition. 1981, New York: Wiley-Interscience.
  • [6] Tuğluoğlu N., Yakuphanoglu F., and Karadeniz S. Determination of the interface state density of the In/p-Si Schottky diode by conductance and capacitance–frequency characteristics. Physica B: Condensed Matter, 2007. 393(1): 56-60.
  • [7] Tuğluoğlu N., Çalışkan F., and Yüksel Ö.F. Analysis of inhomogeneous barrier and capacitance parameters for Al/rubrene/n-GaAs (100) Schottky diodes. Synthetic Metals, 2015. 199: 270-275.
  • [8] Nikravan A., Badali Y., Altındal Ş., Uslu İ., and Orak İ. On the Frequency and Voltage-Dependent Profiles of the Surface States and Series Resistance of Au/ZnO/n-Si Structures in a Wide Range of Frequency and Voltage. Journal of Electronic Materials, 2017. 46(10): 5728-5736.
  • [9] Özerden E., Özden P., Afşin Kariper İ., and Pakma O. The electrical characterization of metal–insulator–semiconductor device with β-naphthol orange interface. Journal of Materials Science: Materials in Electronics, 2022. 33(26): 20900-20910.
  • [10] Kacus H., Sahin Y., Aydogan S., et al. Phenol red based hybrid photodiode for optical detector applications. Solid-State Electronics, 2020. 171: 107864.
  • [11] Zeyrek S., Acaroğlu E., Altındal Ş., Birdoğan S., and Bülbül M.M. The effect of series resistance and interface states on the frequency dependent C–V and G/w–V characteristics of Al/perylene/p-Si MPS type Schottky barrier diodes. Current Applied Physics, 2013. 13(7): 1225-1230.
  • [12] Benhaliliba M. and Ben Ahmed A. The phthalocyanine blue-green pigments devices intended for optical filters. Optik, 2022. 258: 168808.
  • [13] Özcan E., Keşan G., Topaloğlu B., et al. Synthesis, photophysical, DFT and photodiode properties of subphthalocyanine–BODIPY dyads. New Journal of Chemistry, 2018. 42(7): 4972-4980.
  • [14] Ganesh V., Manthrammel M.A., Shkir M., et al. Organic semiconductor photodiode based on indigo carmine/n-Si for optoelectronic applications. Applied Physics A, 2018. 124(6): 424.
  • [15] Salem G.F., El-Shazly E.A.A., Farag A.A.M., and Yahia I.S. Optical and microelectronic analysis of rhodamine B-based organic Schottky diode: a new trend application. Applied Physics A, 2018. 124(11): 744.
  • [16] Yuan L., Su Y., Cong H., Yu B., and Shen Y. Application of multifunctional small molecule fluorescent probe BODIPY in life science. Dyes and Pigments, 2022. 208: 110851.
  • [17] Özcan E., Topaloğlu Aksoy B., Tanrıverdi Eçik E., et al. Fabrication of hybrid photodiode systems: BODIPY decorated cyclotriphosphazene covalently grafted graphene oxides. Inorganic Chemistry Frontiers, 2020. 7(16): 2920-2931.
  • [18] Topaloğlu Aksoy B., Keşan G., Özcan E., et al. Solution-processable BODIPY decorated triazine photodiodes and their comprehensive photophysical evaluation. New Journal of Chemistry, 2020. 44(5): 2155-2165.
  • [19] Üçüncü M., Karakuş E., and Emrullahoğlu M. A BODIPY/pyridine conjugate for reversible fluorescence detection of gold(iii) ions. New Journal of Chemistry, 2015. 39(11): 8337-8341.
  • [20] Duman S., Gürbulak B., Doğan S., and Türüt A. Capacitance and conductance–frequency characteristics of Au–Sb/p-GaSe:Gd Schottky barrier diode. Vacuum, 2011. 85(8): 798-801.
  • [21] Cavdar S., Demirolmez Y., Turan N., Koralay H., and Tuğluoğlu N. Analysis of voltage and frequency-dependent series resistance and interface states of Al/ZnCo2O4: Gelatin/n-Si diode. Journal of Materials Science: Materials in Electronics, 2022. 33(29): 22932-22940.
  • [22] Demirezen S., Orak İ., Azizian-Kalandaragh Y., and Altındal Ş. Series resistance and interface states effects on the C–V and G/w–V characteristics in Au/(Co3O4-doped PVA)/n-Si structures at room temperature. Journal of Materials Science: Materials in Electronics, 2017. 28(17): 12967-12976.
  • [23] Kılçık A., Berk N., Seymen H., and Karataş Ş. Study on preparation of graphene oxide thin film layers: the electrical and dielectric characteristics of Au/GO/n-type Si junction structures. Journal of Materials Science: Materials in Electronics, 2021. 32(6): 7913-7925.
  • [24] Çam Ş.U., Yazıcı A.N., Alsaç A.A., and Serin T. Investigation of the effect of Sn doping on Al/Sn: ZnS/p-Si diode parameters with C–V and G/ω-V characteristics. Physica B: Condensed Matter, 2022. 627: 413593.
  • [25] Ulusoy M., Badali Y., Pirgholi-Givi G., Azizian-Kalandaragh Y., and Altındal Ş. The capacitance/conductance and surface state intensity characteristics of the Schottky structures with ruthenium dioxide-doped organic polymer interface. Synthetic Metals, 2023. 292: 117243.
  • [26] Nicollian E.H. and Brews J.R. MOS (metal oxide semiconductor) physics and technology. 1982: Wiley New York.
  • [27] Turut A., Karabulut A., Ejderha K., and Bıyıklı N. Capacitance–conductance–current–voltage characteristics of atomic layer deposited Au/Ti/Al2O3/n-GaAs MIS structures. Materials Science in Semiconductor Processing, 2015. 39: 400-407.
  • [28] Tozlu C. and Mutlu A. Poly(melamine-co-formaldehyde) methylated effect on the interface states of metal/polymer/p-Si Schottky barrier diode. Synthetic Metals, 2016. 211: 99-106.
  • [29] Tuğluoğlu N., Yüksel Ö.F., Karadeniz S., and Şafak H. Frequency dependent interface state properties of a Schottky device based on perylene-monoimide deposited on n-type silicon by spin coating technique. Materials Science in Semiconductor Processing, 2013. 16(3): 786-791.
  • [30] Hill W.A. and Coleman C.C. A single-frequency approximation for interface-state density determination. Solid-State Electronics, 1980. 23(9): 987-993.
  • [31] Cavdar S., Demirolmez Y., Turan N., Koralay H., Tuğluoğlu N., and Arda L. Investigation of trap states, series resistance and diode parameters in Al/gelatin/n-Si Schottky diode by voltage and frequency dependent capacitance and conductance analysis, ECS Journal of Solid State Science Technology, 2022. 11: 025001.
  • [32] Zeyrek S., Acaroğlu E., Altındal Ş., Birdoğan S., Bülbül M.M. The effect of series resistance and interface states on the frequency dependent C–V and G/w–V characteristics of Al/perylene/p-Si MPS type Schottky barrier diodes, Current Applied Physics, 2013. 13(7): 1225-1230.
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Gazi Üniversitesi , Fen Bilimleri Enstitüsü