17-4 PH Paslanmaz Çeliğin MoS2 Nanoakışkan Koşulları Altında Sürtünme/Aşınma Performansının İncelenmesi

Bu çalışmada 17-4 PH paslanmaz çelik malzemenin farklı koşullar altında, sürtünme/aşınma performansları incelenmiştir. Deneyler kuru, baz sıvı (bitkisel bazlı yağ) ve molibden de sülfür (MoS2) nanoakışkan koşulları altında gerçekleştirilmiştir. MoS2 nanoakışkanın çökelme veya topaklanmasının önüne geçme adına karışıma sodyum dodesil sülfat (SDS) yüzey aktif maddesi ilave edilmiştir. Sürtünme/aşınma deneylerinde bir pim-disk test cihazı kullanılmıştır. Deneylerde performans değerlendirilmesinde, sürtünme katsayısı, mikrosertlik, titreşim seviyesi, ortalama yüzey pürüzlülüğü (Ra) ve pim yüzey aşınması kullanılmıştır. Pim-disk deneyleri sonucu elde edilen verilere göre, MoS2 nanoakışkan koşulunun diğer koşullara göre daha iyi performans gösterdiği belirlenmiştir. MoS2 nanoakışkan koşulu kuru koşula göre sürtünme katsayısı, titreşim ortalaması, yüzey pürüzlülük Ra ve mikrosertlik değerlerini sırasıyla % 74,51, % 87,22, % 38,69 ve % 6,41 oranında azaltmıştır.

Investigation of Friction/Wear Performance of 17-4 PH Stainless Steel under MoS2 Nanofluid Conditions

This study investigated the friction/wear behaviour of 17-4 PH stainless steel material under different conditions. Experiments were carried out under dry, base liquid (vegetable-based oil) and molybdenum disulfide (MoS2) nanofluid conditions. Sodium dodecyl sulfate (SDS) surfactant was added to the prepared mixture due to prevent sedimentation or agglomeration of the MoS2 nanofluid. A pin-on-disc tester was used in the friction/wear experiments. The coefficient of friction, microhardness, vibration level, average surface roughness (Ra) and pin surface wear was used to evaluate the performance in the experiments. According to the data obtained as a result of pin-on-disc experiments, it was determined that the MoS2 nanofluid condition showed the best performance compared to the conditions. MoS2 nanofluid condition decreased friction coefficient by 74.51%, vibration average by 87.22%, Ra value by 38.69% and microhardness values by 6.41% compared to dry condition.

___

  • [1] Klim Z., Ennajimi E., Balazinski M., Fortin C. Cutting tool reliability analysis for variable feed milling of 17-4PH stainless steel. Wear. 1996; 195: 206–213.
  • [2] Kochmański P., Nowacki J. Activated gas nitriding of 17-4 PH stainless steel. Surfaces Coatings Technolgy. 2006; 200: 6558–6562.
  • [3] Mohanty A., Gangopadhyay S., Thakur A. On applicability of multilayer coated tool in dry machining of aerospace grade stainless steel. Material Manufacturing Process.2015; 31: 869–879.
  • [4] Mirzadeh H., Najafizadeh A., Moazeny M. Flow curve cnalysis of 17-4 PH stainless steel under hot compression test, Metallurgical and Materials Transactions A. 2009; 40: 2950–2958.
  • [5] Yaşar SA, Uzun G, Korkut İ. 17-4 PH ve 15-5 PH paslanmaz çeliklerinin tornalanmasında kesme parametrelerinin kesme kuvveti ve yüzey pürüzlülüğüne etkilerinin araştırılması. Karaelmas Fen ve Mühendislik Dergisi. 2020; 10: 71–81.
  • [6] Xiong S., Liang D., Wu H., Lin W., Chen J., Zhang B. Preparation, characterization, tribological and lubrication performances of Eu doped CaWO4 nanoparticle as anti-wear additive in water-soluble fluid for steel strip during hot rolling, Applied Surface Science. 2021; 539: 148090.
  • [7] Ishikawa T., Choi J. Effect of water adsorption on the frictional properties of hydrogenated amorphous carbon films in various relative humidities, Langmuir. 2021;37:1012–24.
  • [8] Karthikeyan K.M.B., Vijayanand J., Arun K., Rao V.S. Thermophysical and wear properties of eco-friendly nano lubricants. Materials Today: Proceedings. 2021;39: 285–291.
  • [9] Hong S.Y., Broomer M., Hong S.Y., Broomer M. Economical and ecological cryogenic machining of AISI 304 austenitic stainless steel. Clean Products and Processes. 2000; 2: 157–66.
  • [10] Shashidhara YM., Jayaram SR. Vegetable oils as a potential cutting fluid-An evolution, Tribology İnternational.2009; 43:1073–81.
  • [11] Radisavljevic B., Radenovic A., Brivio J., Giacometti V., Kis A. Single-layer MoS2 transistors. Nature Nanotechnology. 2011; 6: 147–150.
  • [12] Sahoo R. R., Biswas S. K. Microtribology and friction-induced material transfer in layered MoS2 nanoparticles sprayed on a steel surface. Tribology Letters. 2010;37: 313–326.
  • [13] Shen B., Malshe A. P., Kalita P., Shih A. J., Performance of novel MoS2 nanoparticles based grinding fluids in minimum quantity lubrication grinding. Transactions of Namri/SME. 2008;36:357–364.
  • [14] Hu K. H., Liu, M., Wang Q. J., Xu Y. F., Schraube S., Hu X.G. Tribological properties of molybdenum disulfide nanosheets by monolayer restacking process as additive in liquid paraffin. Tribology International. 2009;42:33–39.
  • [15] Akincioğlu S., Şirin Ş. Evaluation of the tribological performance of the green hBN nanofluid on the friction characteristics of AISI 316L stainless steel. Industrial Lubrication and Tribology.2021; 73:(9).1176–1186.
  • [16] Yücel A., Yıldırım Ç. V., Sarıkaya M., Şirin Ş., Kıvak T., Gupta M. K., Tomaz Í. V. Influence of MoS2 based nanofluid-MQL on tribological and machining characteristics in turning of AA 2024 T3 aluminum alloy. Journal of Materials Research and Technology. 2021; 15:1688–1704.
  • [17] Shi, H., Fu, X., Zhou, X., Wang, D., Hu, Z. A low-temperature extraction–solvothermal route to the fabrication of micro-sized MoS2 spheres modified by Cyanex 301. Journal of Solid State Chemistry.2006;179:(6)1690–1697.
  • [18] Ünlüoğlu O, Çelik O.N. Grafit partiküllerinin yağ katkısı olarak AISI H11 çeliğinin sürtünme ve aşınma davranışı üzerine etkisi. Politeknik. 2012;1: 1-1.
  • [19] Kumar G.R, Suresh Kumar Reddy N. Tribological studies of EN31 steel and Ti-6Al-4V alloy materials using pin-on-disc tribometer. Material Today Proceedings, 2020;28:1216–1220.
  • [20] Şirin Ş, Akıncıoğlu S, Gupta MK, Kıvak T, Khanna N. A tribological performance of vegetable-based oil combined with GNPs and hBN nanoparticles on the friction-wear tests of titanium grade 2. Tribology International. 2023; 181:108314.
  • [21] Yıldırım ÇV, Şirin Ş, Kıvak T, Sarıkaya M.The effect of nanofluids reinforced with different surfactants on the machining and friction-wear properties of Waspaloy. Tribology International. 2023; 181:108316.
  • [22] Şirin E, Kıvak T, Yıldırım Ç.V. Effects of mono/hybrid nanofluid strategies and surfactants on machining performance in the drilling of Hastelloy X, Tribology International.2021; 157: 106894.
  • [23] Şirin Ş, Kıvak T. Performances of different eco-friendly nanofluid lubricants in the milling of Inconel X-750 superalloy. Tribology International.2019; 137: 180–192.
  • [24] Yıldırım Ç.V, Sarıkaya M, Kıvak T, Şirin Ş.The effect of addition of hBN nanoparticles to nanofluid-MQL on tool wear patterns, tool life, roughness and temperature in turning of Ni-based Inconel 625. Tribology International. 2019; 134: 443–456.
  • [25] Lee K, Hwang Y, Cheong S, Choi Y, Kwon L, Lee J, Kim S.H. Understanding the role of nanoparticles in nano-oil lubrication,Tribol Letters. 2009; 35: 127–131.
  • [26] Şirin Ş. AISI 904L süper dubleks paslanmaz çeliğin tornalanmasında MMY, hBN ve N2 soğutma/yağlama koşullarının performans değerlendirmesi. International Journal of Innovative Engineering Applications. 2022; 6: 103–110.
  • [27] Alemani M, Gialanella S, Straffelini G, Ciudin R, Olofsson U, Perricone G, Metinoz I. Dry sliding of a low steel friction material against cast iron at different loads: Characterization of the friction layer and wear debris. Wear. 2017; 376 :1450–1459.
  • [28] Sundh J, Olofsson U, Sundvall K. Seizure and wear rate testing of wheel–rail contacts under lubricated conditions using pin-on-disc methodology. Wear. 2008; 265:1425–1430.
  • [29] Çelik O.N, Ay N, Göncü Y., Effect of nano hexagonal boron nitride lubricant additives on the friction and wear properties of AISI 4140 steel. Particulate Science and Technology. 2013; 31: 501–506.
  • [30] Wulpi D. J. (2013).Understanding How Components Fail. America: ASM International. [31] Chatha S.S, Pal A, Singh T. Performance evaluation of aluminium 6063 drilling under the influence of nanofluid minimum quantity lubrication. Journal of Cleaner Production. 2016; 137: 537-545.
  • [32] Yi S, Li G, Ding S, Mo J. Performance and mechanisms of graphene oxide suspended cutting fluid in the drilling of titanium alloy Ti-6Al-4V. Journal of Manufacturing Processes. 2017; 29:182–93.
  • [33] Sen B., Gupta M. K., Mia M., Mandal U. K., Mondal S. P. Wear behaviour of TiAlN coated solid carbide end-mill under alumina enriched minimum quantity palm oil-based lubricating condition. Tribology International. 2020; 148: 106310.
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Gazi Üniversitesi , Fen Bilimleri Enstitüsü