Ulusal ve Uluslararası Standartlarda Üretilen Kompozit Binaların Karşılaştırmalı Analizi

5-, 10-, 15- ve 20 katlı binalar beton dolgulu çelik tüp kolonlu ve kompozit kirişli moment aktaran çerçeve binalar modellenmiştir. Binalar yüksek süneklik seviyelerinde TCDCSS -2016 ve TBEC-2018 yönetmeliğine göre tasarlanmıştır. DCH yapılarının tasarımı, 0.79 g PGA için ZC zeminde tasarlanmıştır. Tasarım yeri seçilirken, inşaatın Kuzey Anadolu fay hattı ile Doğu Anadolu fay hattı arasında kalan bir bölgede, yani deprem riskinin yüksek olduğu bir bölgede yapılacağı varsayılmıştır. Çalışma kapsamında yapıların tasarımı ve performans değerlendirmesi yapılırken SeismoStruct [1] yazılımı kullanılmıştır. Doğrusal olmayan statik itme ve artımlı dinamik analizler kullanılmıştır. PO analizinde düzgün ve üçgen yük dağılımları kullanılmıştır. Dinamik analizde 16 deprem yer hareketi kullanılmıştır. Kat sayısının CMRF'lerin sismik davranışı üzerindeki etkisi doğrusal olmayan analiz sonuçları kullanılarak incelenmiştir. Buna göre, CMRF yapıları için elemanların yanal tepkisindeki değişim, aşırı dayanım faktörleri, süneklik ve kesit kapasitesi değişimi sunulmuştur. Ayrıca benzer geometrilere sahip önceki çalışmalardan elde edilen yapıların performans parametreleri ile karşılıklı bir değerlendirme yapılmıştır.

Comparative Analysis of Composite Buildings Produced in National and International Standards

Composite moment resisting frame buildings with 5-, 10-, 15- and 20-story concrete filled steel tube columns and composite beams were modelled. The buildings are designed according to Turkish Code for Design and Construction of Steel Structures-2016 (TCDCSS-2016) and Türkiye Building Earthquake Code-2018 (TBEC-2018) regulations at high ductility levels. The design of the DCH structures was designed in ZC ground for a 0.79 g PGA. While choosing the design location, it is assumed that the construction will be made in a region between the North Anatolian fault line and the East Anatolian fault line, that is, in a region with high earthquake risk. Within the scope of the study, SeismoStruct [1] software was used during the design and performance evaluation of the structures. Nonlinear static push and incremental dynamic analyses were used. Uniform and triangular load distributions were adopted in the PO analysis, and 16 earthquake ground motions were used in the dynamic analysis. The effect of story number on the seismic behavior of CMRFs was investigated using nonlinear analysis results. Accordingly, variation in lateral response, overstrength factors, ductility, and section capacity change of members for CMRF structures were presented. In addition, a mutual evaluation was made with the performance parameters obtained from previous studies with similar geometries.

___

  • [1] SeismoSoft, “SeismoStruct: A computer software for static and dynamic nonlinear analysis of framed structures,” SeismoSoft.com, 2018. [Online]. Available: www.seismosoft.com. [Accessed: Jan. 12, 2023].
  • [1] SeismoSoft, “SeismoStruct: A computer software for static and dynamic nonlinear analysis of framed structures,” SeismoSoft.com, 2018. [Online]. Available: www.seismosoft.com. [Accessed: Jan. 12, 2023].
  • [2] A. Y. Elghazouli, "Assessment of European seismic design procedures for steel framed structures," Bulletin of Earthquake Engineering, vol. 8, pp. 65-89, 2009. doi:10.1007/s10518-009-9125-6
  • [2] A. Y. Elghazouli, "Assessment of European seismic design procedures for steel framed structures," Bulletin of Earthquake Engineering, vol. 8, pp. 65-89, 2009. doi:10.1007/s10518-009-9125-6
  • [3] N. E. Shanmugam and B. Lakshmi, "State of the art report on steel-concrete composite columns," Journal of Constructional Steel Research, vol. 57, pp. 1041-1080, 2001. doi:10.1016/S0143-974X(01)00021-9
  • [3] N. E. Shanmugam and B. Lakshmi, "State of the art report on steel-concrete composite columns," Journal of Constructional Steel Research, vol. 57, pp. 1041-1080, 2001. doi:10.1016/S0143-974X(01)00021-9
  • [4] M. Shams and M. A. Saadeghvaziri, "State of the art of concrete-filled steel tubular columns," ACI Structural Journal, vol. 94, pp. 558–571, 1997. doi:10.14359/505
  • [4] M. Shams and M. A. Saadeghvaziri, "State of the art of concrete-filled steel tubular columns," ACI Structural Journal, vol. 94, pp. 558–571, 1997. doi:10.14359/505
  • [5] S. Etli, "Analytical Evaluation of Behavior of Composite Columns Under Axial Load," International Journal of Pure and Applied Sciences, vol. 7, no. 3, pp. 526-536. 2021. doi:10.29132/ijpas.991166
  • [5] S. Etli, "Analytical Evaluation of Behavior of Composite Columns Under Axial Load," International Journal of Pure and Applied Sciences, vol. 7, no. 3, pp. 526-536. 2021. doi:10.29132/ijpas.991166
  • [6] S. Etli, "Parametric Analysis of the Performance of Steel-Concrete Composite Structures Designed with TBDY 2018," International Journal of Innovative Engineering Applications, vol. 6, no. 1, pp. 7-16, 2022. doi:10.46460/ijiea.1029942
  • [6] S. Etli, "Parametric Analysis of the Performance of Steel-Concrete Composite Structures Designed with TBDY 2018," International Journal of Innovative Engineering Applications, vol. 6, no. 1, pp. 7-16, 2022. doi:10.46460/ijiea.1029942
  • [7] L. H. Han, W. Li and R. Bjorhovde, "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: members," Journal of Constructional Steel Research, vol. 100, pp. 211–228. 2014. doi:10. 1016/j.jcsr. 2014. 04. 016
  • [7] L. H. Han, W. Li and R. Bjorhovde, "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: members," Journal of Constructional Steel Research, vol. 100, pp. 211–228. 2014. doi:10. 1016/j.jcsr. 2014. 04. 016
  • [8] M. D. Denavit, J. F. Hajjar, T. Perea and R. T. Leon, "Stability Analysis and Design of Composite Structures," Journal of Structural Engineering (United States), vol.142, pp. 1-12, 2016. doi:10.1061/(ASCE)ST.1943-541X.0001434
  • [8] M. D. Denavit, J. F. Hajjar, T. Perea and R. T. Leon, "Stability Analysis and Design of Composite Structures," Journal of Structural Engineering (United States), vol.142, pp. 1-12, 2016. doi:10.1061/(ASCE)ST.1943-541X.0001434
  • [9] M. D. Denavit, J. F. Hajjar, T. Perea and R. T. Leon, "Seismic performance factors for moment frames with steel-concrete composite columns and steel beams,” Earthquake Engineering & Structural Dynamics, vol. 45, pp. 1685-1703,2016. doi:10.1002/eqe.2737
  • [9] M. D. Denavit, J. F. Hajjar, T. Perea and R. T. Leon, "Seismic performance factors for moment frames with steel-concrete composite columns and steel beams,” Earthquake Engineering & Structural Dynamics, vol. 45, pp. 1685-1703,2016. doi:10.1002/eqe.2737
  • [10] M. D. Denavit and J. F. Hajjar, "Nonlinear seismic analysis of circular concrete-filled steel tube members and frames," Journal of Structural Engineering, vol.138, pp. 1089-1098, 2012. doi:10.1061/(ASCE)ST.1943-541X.0000544
  • [10] M. D. Denavit and J. F. Hajjar, "Nonlinear seismic analysis of circular concrete-filled steel tube members and frames," Journal of Structural Engineering, vol.138, pp. 1089-1098, 2012. doi:10.1061/(ASCE)ST.1943-541X.0000544
  • [11] S. Etli and E. M. Güneyisi, "Seismic performance evaluation of regular and irregular composite moment resisting frames," Latin American Journal of Solids and Structures, vol. 17, pp. 1-22, 2020. doi:10.1590/1679-78255969
  • [11] S. Etli and E. M. Güneyisi, "Seismic performance evaluation of regular and irregular composite moment resisting frames," Latin American Journal of Solids and Structures, vol. 17, pp. 1-22, 2020. doi:10.1590/1679-78255969
  • [12] S. Etli and E. M. Güneyisi, "Assessment of Seismic Behavior Factor of Code-Designed Steel-Concrete Composite Buildings," Arabian Journal for Science and Engineering, vol. 46, pp. 4271-4292, 2021. doi:10.1007/s13369-020-04913-9
  • [12] S. Etli and E. M. Güneyisi, "Assessment of Seismic Behavior Factor of Code-Designed Steel-Concrete Composite Buildings," Arabian Journal for Science and Engineering, vol. 46, pp. 4271-4292, 2021. doi:10.1007/s13369-020-04913-9
  • [13] A. Zona, M. Barbato and J.P.Conte, "Nonlinear Seismic Response Analysis of Steel-Concrete Composite Frames," Journal of Structural Engineering, vol. 134, pp. 986-997, 2008. doi:10.1061/(ASCE)0733-9445
  • [13] A. Zona, M. Barbato and J.P.Conte, "Nonlinear Seismic Response Analysis of Steel-Concrete Composite Frames," Journal of Structural Engineering, vol. 134, pp. 986-997, 2008. doi:10.1061/(ASCE)0733-9445
  • [14] C. Vatansever and Y.E. Şimşek, "Design and nonlinear time history analysis of a multi-story building with concrete filled composite columns and steel beams," Pamukkale University Journal of Engineering Sciences – PAJES, vol. 27, no. 3, pp. 264–273, 2021. doi.10.5505/pajes.2020.91043
  • [14] C. Vatansever and Y.E. Şimşek, "Design and nonlinear time history analysis of a multi-story building with concrete filled composite columns and steel beams," Pamukkale University Journal of Engineering Sciences – PAJES, vol. 27, no. 3, pp. 264–273, 2021. doi.10.5505/pajes.2020.91043
  • [15] E. M. Güneyisi and S. Etli, " Investigation of the Effect of Diagonal Eccentricity on Behavior of Braced Composite Structures Under the Impact of Near and Far-field Earthquakes," TUBİTAK. PROJECT NO, 2021.
  • [15] E. M. Güneyisi and S. Etli, " Investigation of the Effect of Diagonal Eccentricity on Behavior of Braced Composite Structures Under the Impact of Near and Far-field Earthquakes," TUBİTAK. PROJECT NO, 2021.
  • [16] S. Etli, and E. M. Güneyisi, "Response of steel buildings under near and far field earthquakes," Journal of Civil Engineering Beyond Limits, vol. 1, pp. 24–30, 2020. doi:10.36937/cebel.2020.002.004
  • [16] S. Etli, and E. M. Güneyisi, "Response of steel buildings under near and far field earthquakes," Journal of Civil Engineering Beyond Limits, vol. 1, pp. 24–30, 2020. doi:10.36937/cebel.2020.002.004
  • [17] Environment And Urban Ministry of Turkey, “Regulation on Design, Calculation and Construction Principles of Steel Structures,” Turkey, 2016.
  • [17] Environment And Urban Ministry of Turkey, “Regulation on Design, Calculation and Construction Principles of Steel Structures,” Turkey, 2016.
  • [18] TBEC-2018, “Turkey Disaster and Emergency Management Presidency: Turkey Building Earthquake Regulation,” Turkey, 2018.
  • [18] TBEC-2018, “Turkey Disaster and Emergency Management Presidency: Turkey Building Earthquake Regulation,” Turkey, 2018.
  • [19] Turkey Disaster and Emergency Management Presidency, "Turkey Earthquake Hazard Maps," Available: https://tdth.afad.gov.tr/.
  • [19] Turkey Disaster and Emergency Management Presidency, "Turkey Earthquake Hazard Maps," Available: https://tdth.afad.gov.tr/.
  • [20] TS-498, "Yapı elemanlarının boyutlandırılmasında alınacak yüklerin hesap değerleri," Türk Stand. Enstitüsü, 2007.
  • [20] TS-498, "Yapı elemanlarının boyutlandırılmasında alınacak yüklerin hesap değerleri," Türk Stand. Enstitüsü, 2007.
  • [21] S. Etli and E. M. Güneyisi, “Effect of Using Eccentric Braces with Different Link Lengths on the Seismic Demand of CFST Column-Composite Beam Frames Subjected to Near-Field and Far-Field Earthquakes,” Iranian Journal of Science and Technology, 2022. doi:10.1007/s40996-022-00994-8
  • [21] S. Etli and E. M. Güneyisi, “Effect of Using Eccentric Braces with Different Link Lengths on the Seismic Demand of CFST Column-Composite Beam Frames Subjected to Near-Field and Far-Field Earthquakes,” Iranian Journal of Science and Technology, 2022. doi:10.1007/s40996-022-00994-8
  • [22] S. Etli and E. M. Güneyisi, "Effect of nonlinear modeling approaches used for composite elements on seismic behavior of composite framed buildings," Sâdhânâ, vol. 47, 2022. doi:10.1007/s12046-022-01871-w
  • [22] S. Etli and E. M. Güneyisi, "Effect of nonlinear modeling approaches used for composite elements on seismic behavior of composite framed buildings," Sâdhânâ, vol. 47, 2022. doi:10.1007/s12046-022-01871-w
  • [23] A. Y. Elghazouli, J. M. Castro and B. A. Izzuddin, "Seismic performance of composite moment-resisting frames," Engineering Structures, vol. 30, no. 7, pp. 1802-1819, 2008. doi:10.1016/j.engstruct.2007.12.004
  • [23] A. Y. Elghazouli, J. M. Castro and B. A. Izzuddin, "Seismic performance of composite moment-resisting frames," Engineering Structures, vol. 30, no. 7, pp. 1802-1819, 2008. doi:10.1016/j.engstruct.2007.12.004
  • [24] D. Vamvatsikos, Seismic performance, capacity and reliability of structures as seen through incremental dynamic analysis, Stanford University, 2002.
  • [24] D. Vamvatsikos, Seismic performance, capacity and reliability of structures as seen through incremental dynamic analysis, Stanford University, 2002.
  • [25] M. Ferraioli, A. Lavino and A. Mandara, "Behaviour factor of code-designed steel moment-resisting frames,” International journal of steel structures. Vol. 14, pp. 243-254, 2014.
  • [25] M. Ferraioli, A. Lavino and A. Mandara, "Behaviour factor of code-designed steel moment-resisting frames,” International journal of steel structures. Vol. 14, pp. 243-254, 2014.
  • [26] N. Fanaie and R. Sheykhi, "Seismic Behaviour Assessment of Eccentrically Split-X Braced Frames," Scientıa Iranıca, vol. 28, pp. 65-84, 2019. doi:10.24200/sci.2019.50655.1804
  • [26] N. Fanaie and R. Sheykhi, "Seismic Behaviour Assessment of Eccentrically Split-X Braced Frames," Scientıa Iranıca, vol. 28, pp. 65-84, 2019. doi:10.24200/sci.2019.50655.1804
  • [27] A. Seyedkazemi and F. Rofooei, "Comparison of Static Pushover Analysis and IDA-Based Probabilistic Methods in Assessing the Seismic Performance Factors of Diagrid Structures," Scientıa Iranıca, vol. 28, pp. 124-137, 2019. doi:10.24200/sci.2019.51555.2250
  • [27] A. Seyedkazemi and F. Rofooei, "Comparison of Static Pushover Analysis and IDA-Based Probabilistic Methods in Assessing the Seismic Performance Factors of Diagrid Structures," Scientıa Iranıca, vol. 28, pp. 124-137, 2019. doi:10.24200/sci.2019.51555.2250
  • [28] M. Zanjanchi and M. Mofid, "On the assessment of MIDA method for mid-rise steel structures with non-symmetrical plan" Sci. Iran., vol. 26, pp. 2703-2711, 2019. doi:10.24200/sci.2019.21356
  • [28] M. Zanjanchi and M. Mofid, "On the assessment of MIDA method for mid-rise steel structures with non-symmetrical plan" Sci. Iran., vol. 26, pp. 2703-2711, 2019. doi:10.24200/sci.2019.21356
  • [29] A. Bakhshi and H. Soltanieh, "Development of fragility curves for existing residential steel buildings with concentrically braced frames," Scientıa Iranıca, vol. 26, pp. 2212-2228, 2019. doi:10.24200/sci.2019.21498
  • [29] A. Bakhshi and H. Soltanieh, "Development of fragility curves for existing residential steel buildings with concentrically braced frames," Scientıa Iranıca, vol. 26, pp. 2212-2228, 2019. doi:10.24200/sci.2019.21498
  • [30] M. Sabouniaghdam, E. Mohammadi Dehcheshmeh, P. Safari and V.Broujerdian, "Probabilistic collapse assessment of steel frame structures considering the effects of soil-structure interaction and height," Scientıa Iranıca, vol. 29, no. 6, pp. 2979-2994 , 2022. doi:10.24200/sci.2022.58707.5860
  • [30] M. Sabouniaghdam, E. Mohammadi Dehcheshmeh, P. Safari and V.Broujerdian, "Probabilistic collapse assessment of steel frame structures considering the effects of soil-structure interaction and height," Scientıa Iranıca, vol. 29, no. 6, pp. 2979-2994 , 2022. doi:10.24200/sci.2022.58707.5860
  • [31] M. Maddahi, M. Gerami and H. Naderpour, "Effect of structural uncertainties on seismic performance of moment frame rehabilitated with steel shear wall," Scientıa Iranıca, vol. 28, no. 4, pp. 2010-2022, 2020. doi:10.24200/sci.2020.54252.3668
  • [31] M. Maddahi, M. Gerami and H. Naderpour, "Effect of structural uncertainties on seismic performance of moment frame rehabilitated with steel shear wall," Scientıa Iranıca, vol. 28, no. 4, pp. 2010-2022, 2020. doi:10.24200/sci.2020.54252.3668
  • [32] TADAS, "Turkey Acceleration Database and Analysis System (TADAS)," mdsoft.com.tr, [Online]. Available: http://www.mdsoft.com.tr/Pages/Product_EqAcc. [Accessed: Jul. 12, 2023].
  • [32] TADAS, "Turkey Acceleration Database and Analysis System (TADAS)," mdsoft.com.tr, [Online]. Available: http://www.mdsoft.com.tr/Pages/Product_EqAcc. [Accessed: Jul. 12, 2023].
  • [33] G. Della Corte, G. De Matteis and R. Landolfo, "Influence of connection modelling on seismic response of moment resisting steel frames," Moment resistant connections of steel frames in seismic areas - Design and reliability, E&FN SPON London, pp. 485-512, 2000. doi:10.1017/CBO9781107415324.004
  • [33] G. Della Corte, G. De Matteis and R. Landolfo, "Influence of connection modelling on seismic response of moment resisting steel frames," Moment resistant connections of steel frames in seismic areas - Design and reliability, E&FN SPON London, pp. 485-512, 2000. doi:10.1017/CBO9781107415324.004
  • [34] R. Simoes, L. S. da Silva, P. J. S. Cruz, "Cyclic behaviour of end-plate beam-to-column composite joints," Steel and Composite Structures, vol. 1, pp. 355-376, 2001. doi:10.12989/scs.2001.1.3.355
  • [34] R. Simoes, L. S. da Silva, P. J. S. Cruz, "Cyclic behaviour of end-plate beam-to-column composite joints," Steel and Composite Structures, vol. 1, pp. 355-376, 2001. doi:10.12989/scs.2001.1.3.355
  • [35] M. F. B. Shamsudin, "Analytical Tool for Modeling the Cyclic Behaviour of Extended End-Plate," Master Thesis, University of Coimbra, Coimbra, Portugal, 2014.
  • [35] M. F. B. Shamsudin, "Analytical Tool for Modeling the Cyclic Behaviour of Extended End-Plate," Master Thesis, University of Coimbra, Coimbra, Portugal, 2014.
  • [36] P. Nogueiro, L.S. Da Silva, R. Bento and R. Simões, "Calibration of model parameters for the cyclic response of end-plate beam-to-column steel-concrete composite joints," Steel and Composite Structures, vol. 9, pp. 39-58, 2009. doi:10.12989/scs.2009.9.1.039
  • [36] P. Nogueiro, L.S. Da Silva, R. Bento and R. Simões, "Calibration of model parameters for the cyclic response of end-plate beam-to-column steel-concrete composite joints," Steel and Composite Structures, vol. 9, pp. 39-58, 2009. doi:10.12989/scs.2009.9.1.039
  • [37] J. P. Jaspart and K. Weynand, Design of Joints in Steel and Composite Structures, ECCS and Ernst & Sohn, 2016.
  • [37] J. P. Jaspart and K. Weynand, Design of Joints in Steel and Composite Structures, ECCS and Ernst & Sohn, 2016.
  • [38] D. Vamvatsikos and C. A. Cornell, "Direct estimation of the seismic demand and capacity of MDOF systems through Incremental Dynamic Analysis of an SDOF approximation," Journal of Structural Engineering, vol. 131, pp. 589-599, 2005. doi:10.1061/(ASCE)0733-9445
  • [38] D. Vamvatsikos and C. A. Cornell, "Direct estimation of the seismic demand and capacity of MDOF systems through Incremental Dynamic Analysis of an SDOF approximation," Journal of Structural Engineering, vol. 131, pp. 589-599, 2005. doi:10.1061/(ASCE)0733-9445
  • [39] E. Miranda and V. V. Bertero, "Evaluation of Strength Reduction Factors for Earthquake-Resistant Design," Earthquake Spectra, vol. 10, pp. 357-379, 1994. doi:10.1193/1.1585778
  • [39] E. Miranda and V. V. Bertero, "Evaluation of Strength Reduction Factors for Earthquake-Resistant Design," Earthquake Spectra, vol. 10, pp. 357-379, 1994. doi:10.1193/1.1585778
  • [40] A. S. Elnashai and L. Di Sarno, Fundamentals of Earthquake Engineering: From Source to Fragility, 2nd Edition. John Wiley & Sons, 2015.
  • [40] A. S. Elnashai and L. Di Sarno, Fundamentals of Earthquake Engineering: From Source to Fragility, 2nd Edition. John Wiley & Sons, 2015.
  • [41] A. Whittaker, G. Hart and C. Rojahn, "Seismic response modification factors" Journal of Structural Engineering, vol. 125, pp. 438-444, 1999.
  • [41] A. Whittaker, G. Hart and C. Rojahn, "Seismic response modification factors" Journal of Structural Engineering, vol. 125, pp. 438-444, 1999.
  • [42] A. S. Elnashai and A. M. Mwafy, "Overstrength and force reduction factors of multistorey reinforced-concrete buildings," The Structural Design of Tall Buildings, vol. 11, no. 5, pp. 329-351, 2002.
  • [42] A. S. Elnashai and A. M. Mwafy, "Overstrength and force reduction factors of multistorey reinforced-concrete buildings," The Structural Design of Tall Buildings, vol. 11, no. 5, pp. 329-351, 2002.
  • [43] A. M. Mwafy and A. S. Elnashai, "Static pushover versus dynamic collapse analysis of RC buildings," Engineering Structures, vol. 23, no. 5, pp. 407-424, 2001. doi:10.1016/S0141-0296(00)00068-7
  • [43] A. M. Mwafy and A. S. Elnashai, "Static pushover versus dynamic collapse analysis of RC buildings," Engineering Structures, vol. 23, no. 5, pp. 407-424, 2001. doi:10.1016/S0141-0296(00)00068-7
  • [44] A. M. Mwafy, “Seismic performance of code-designed RC buildings,” PhD Thesis, Technology and Medicine University of London, London, 2001.
  • [44] A. M. Mwafy, “Seismic performance of code-designed RC buildings,” PhD Thesis, Technology and Medicine University of London, London, 2001.
Gazi Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2015
  • Yayıncı: Aydın Karapınar