Eriyik Yığma Modellemeye Dayalı 3B Baskılı PLA ve Tok PLA Malzemelerinin Aşınma Özelliklerinin Deneysel Olarak Değerlendirilmesi

Bu çalışma, eklemeli imalat uygulamalarında yaygın olarak kullanılan iki polimer malzemenin, PLA (Poli Laktik Asit) ve Tough PLA'nın aşınma özelliklerini araştırmıştır. Numuneler, Eriyik Yığma Modelleme kullanılarak bir 3D yazıcıda %100 doluluk oranıyla üretildi. Numunelerin aşınma özelliklerini analiz etmek için sertlik ölçümleri ve aşındırma aşınma testleri yapılmıştır. Karşılaştırma, hacim kaybı, sürtünme katsayısı ve özgül aşınma oranı gibi parametreleri içeriyordu. Ayrıca aşınmış yüzeylerin kalitesini değerlendirmek için yüzey pürüzlülük ölçümleri yapılmıştır. Aşınma mekanizmaları hakkında bilgi elde etmek için aşınma haritaları oluşturuldu ve aşınmış yüzeyleri tanımlamak için taramalı elektron mikroskobu ve enerji dağıtıcı X-ışını spektroskopisi kullanıldı. Sonuçlar, Tough PLA'nın PLA'ya kıyasla üstün aşınma direnci sergilediğini gösterdi. Uygulanan yüke ve kayma mesafelerine bağlı olarak yorulma, mikro kırılma ve mikro kesme mekanizmaları aşınma sürecine katkıda bulunan faktörler olarak belirlenmiştir. Ayrıca, uygulanan daha yüksek yüklerin yüzey pürüzlülük değerlerinde önemli bir artışa neden olduğu gözlenmiştir.

Experimentally Assessing the Wear Characteristics of 3D-Printed PLA and Tough PLA Materials Based on Fused Deposition Modeling

This study investigated the wear properties of two commonly utilized polymer materials, PLA (Poly Lactic Acid) and Tough PLA, in additive manufacturing applications. The samples were produced with a 100% infill rate on a 3D printer using Fused Deposition Modeling. Hardness measurements and abrasive wear tests were conducted to analyze the wear characteristics of the samples. The comparison involved parameters such as volume loss, coefficient of friction, and specific wear rate. Additionally, surface roughness measurements were performed to assess the quality of the worn surfaces. Wear maps were constructed to obtain information about the wear mechanisms, and scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to describe the worn surfaces. The results demonstrated that Tough PLA exhibited superior wear resistance compared to PLA. Depending on the applied load and sliding distances, fatigue, micro-fracture, and micro-cutting mechanisms were identified as contributing factors to the wear process. Furthermore, it was observed that higher applied loads resulted in a significant increase in surface roughness values.

___

  • [1] B. Özlü, O. Pısık and H. Demir, “Investigation of models produced by rapid prototyping technology solid ground method the dimensional deviations and surface roughness,” Erzincan University Journal of Science and Technology, vol. 13, no.1, pp. 296-305, March 2020. doi:10.18185/erzifbed.559785
  • [2] B. Ergene and Ç. Bolat, “An experimental study on the role of manufacturing parameters on the dry sliding wear performance of additively manufactured PETG,” International Polymer Processing, vol. 37, no. 3, pp 255-270, April 2022. doi:10.1515/ipp-2022-0015
  • [3] E. Zurnacı and H. K. Özdemir, "Investigation of the compressive strength, energy absorption properties and deformation modes of the reinforced core cell produced by the FDM method," Gazi Journal of Engineering Sciences, vol. 9, no. 1, pp. 1-11, April 2023. doi:10.30855/gmbd.0705047
  • [4] M. Mehrpouya, A. Dehghanghadikolaei, B. Fotovvati, A. Vosooghnia, S. S. Emamian, and A. Gisario, “The potential of additive manufacturing in the smart factory industrial 4.0: A review,” Applied Sciences, vol. 9, no. 18, p. 3865, September 2019. doi:10.3390/app9183865
  • [5] D. Erol, B. Doğan and M. Bozdemir, "The experimental study on examination of the usability of three dimensional printing technologies in tread pattern design of vehicle tires," Gazi Journal of Engineering Sciences, vol. 6, no. 1, pp. 62-69, April 2020. doi:10.30855/gmbd.2020.01.06
  • [6] D. Rahmatabadi, I. Ghasemi, M. Baniassadi, K. Abrinia, and M. Baghani, “3D printing of PLA-TPU with different component ratios: Fracture toughness, mechanical properties and morphology,” Journal of Materials Research and Technology, vol. 21, pp. 3970-3981, 2022. doi: 10.1016/j.jmrt.2022.11.024
  • [7] J.W. Stansbury and M. J. Idacavage, “3D printing with polymers: Challenges among expanding options and opportunities,” Dental Materials, vol. 32, no. 1, pp. 54-64, January 2016. doi: 10.1016/j.dental.2015.09.018
  • [8] Ü. G. Başçı, and R. Yamanoğlu, “New generation production technology: additive manufacturing via FDM,” International Journal of 3D Printing Technologies and Digital Industry, vol. 5, no. 2, pp. 339-352, August 2021. doi:10.46519/ij3dptdi.838281
  • [9] B. Kaygusuz, and S. Özerinç, “Investigation of mechanical properties of PLA-based structures produced by 3D printer,” Machine Design and Manufacturing Magazine, vol. 16, no. 1, pp. 1-6, May 2019.
  • [10] T. Tabi, I. E. Sajo, F. Szabo, A. S. Luyt, and J. G. Kovacs, “Crystalline structure of annealed polylactic acid and its relation to processing,” Express Polymer Letters, vol. 4, no.10, pp. 659-668, October 2010. doi:10.3144/expresspolymlett.2010.80
  • [11] M. Murariu and P. Dubois, “PLA composites: From production to properties,” Advanced Drug Delivery Reviews, vol. 107, pp. 17-46, December 2016. doi: 10.1016/j.addr.2016.04.003
  • [12] Wu, N. and Zhang, H., “Mechanical properties and phase morphology of super-tough PLA/PBAT/EMA-GMA multicomponent blends,” Materials Letters, vol. 192, pp. 17–20, April 2017. doi: 10.1016/j.matlet.2017.01.063
  • [13] A. Pandzic and D. Hodzic, “Mechanical properties comparison of PLA, tough PLA and PC 3D printed materials with infill structure – Influence of infill pattern on tensile mechanical properties,” The International Conference on Development and Modernization of Manufacturing (RIM), IOP Conf. Series: Materials Science and Engineering, Sarajevo, vol. 1208, pp. 1-13, December 2021. doi:10.1088/1757-899X/1208/1/012019
  • [14] N. Naveed, “Investigating the material properties and microstructural changes of fused filament fabricated PLA and Tough-PLA parts,” Polymers, vol. 13, no. 9, pp.1487, May 2021. doi:10.3390/polym13091487
  • [15] Ultimaker 2022, “Ultimaker tough PLA TDS,” makerbot.com, Apr. 2022. [Online]. Available: https://support.makerbot.com/s/article/1667411002379. [Accessed: Feb. 17, 2023].
  • [16] S. S. Karabeyoğlu, O. Ekşi, and K. Feratoğlu “Wear characteristics of PLA-Cu composites manufactured by fused deposition modelling under different temperature conditions,” Journal of Balikesir University Institute of Science and Technology, vol. 23, no.1, pp 358-365, January 2021. doi:10.25092/baunfbed.854829
  • [17] I. Istif, “Identification of dry sliding wear behaviour of PLA parts manufactured by fused deposition modelling,” Dicle University Journal of Engineering, vol. 12, no. 2, pp. 275-283, March 2021. doi:10.24012/dumf.855768
  • [18] S. Yilmaz, “Comparative investigation of mechanical, tribological and thermo-mechanical properties of commonly used 3D printing materials,” European Journal of Science and Technology, no. 32, pp. 827-831, 2021. doi:10.31590/ejosat.1040085
  • [19] A. Sevil, A. Ondört, S. Ürgün, and S. Fidan, “Powder coating of 3D printed parts surfaces and erosive wear behaviour characterization of coatings,” European Journal of Science and Technology, vol. 17, pp. 1106-1115, December 2019. doi:10.31590/ejosat.652512
  • [20] C. Rajesh, N.K. Venkata, and G. Gowthami, “Evaluation of wear behaviour OFPLA & ABS parts fabricated by operate FDM technique with distinct orientations,” International Journal of Recent Technology and Engineering, vol. 7, no. 5S3, February 2019.
  • [21] M.A. Cuiffo, J. Snyder, A.M. Elliott, N. Romero, S. Kannan and G.P. Halada, “Impact of the fused deposition (FDM) printing process on polylactic acid (PLA) chemistry and Structure,” Applied Sciences, vol. 7, no. 6, pp. 579, June 2017. doi:10.3390/app7060579
  • [22] J.B. Soares, J. Finamor, F.P. Silva, L. Roldo and L.H. Cândido, “Analysis of the influence of polylactic acid (PLA) colour on FDM 3D printing temperature and part finishing,” Rapid Prototyping, vol. 24, no. 8, pp. 1305-1316(12), January 2018. doi:10.1108/RPJ-09-2017-0177
  • [23] P. K. Gurrala, and S. P. Regalla, “Part strength evolution with bonding between filaments in fused deposition modelling,” Virtual and Physical Prototyping, vol. 9, no. 3, pp. 141–149, May 2014. doi: 10.1080/17452759.2014.913400 . [24] S. Singh, S. Ramakrishna and R. Singh, “Material issues in additive manufacturing: a review,” Journal of Manufacturing Processes, vol. 25, pp. 185–200, January 2017. doi: 10.1016/j.jmapro.2016.11.006
  • [25] K.R. Samit, B. Amritanshu, K.B. Bidyut, P. Debapriya and D. Barnali, 2 - Tribological analysis-general test standards, Editor(s): Soney C. George, Jozef T. Haponiuk, Sabu Thomas, Rakesh Reghunath, Sarath P. S., In Elsevier Series on Tribology and Surface Engineering, Tribology of Polymers, Polymer Composites, and Polymer Nanocomposites, Elsevier, 2023, pp. 17-50, doi:10.1016/B978-0-323-90748-4.00001-7.
  • [26] D.C. Wijnbergen, M.V.D. Stelt and L.M. Verhamme, "The effect of annealing on deformation and mechanical strength of tough PLA and its application in 3D printed prosthetic sockets," Rapid Prototyping Journal, vol. 27 no. 11, pp. 81-89. August 2021. doi:10.1108/RPJ-04-2021-0090
  • [27] T. Letcher and M. Waytashek, “Material property testing of 3D-printed specimen in PLA on an entry-level 3D printer,” in ASME 2014, International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers: Montreal, vol. 2, December 2014. doi:10.1115/IMECE2014-39379
  • [28] A. Fouly, A.K. Assaifan, I.A. Alnaser, O.A. Hussein and H.S. Abdo, “Evaluating the mechanical and tribological properties of 3D printed polylactic-acid (PLA) green-composite for artificial implant: Hip joint case study,” Polymers, vol. 14, no. 23, December 2022. doi:10.3390/polym14235299
  • [29] M. H. Muammel and Z. László, “Comprehending the role of process parameters and filament color on the structure and tribological performance of 3D printed PLA,” Journal of Materials Research and Technology, vol. 15, pp. 647-660, November–December 2021. doi: 10.1016/j.jmrt.2021.08.061
  • [30] N. Wu and H. Zhang, “Mechanical properties and phase morphology of super-tough PLA/PBAT/EMA-GMA multicomponent blends,” Materials Letters, vol. 192, pp. 17-20, April 2017. doi: 10.1016/j.matlet.2017.01.063
  • [31] S. Perepelkina, P. Kovalenko, R. Pechenko and K. Makhmudova, “Investigation of friction coefficient of various polymers used in rapid prototyping technologies with different settings of 3D printing,” Tribology in Industry, vol. 39, no. 4, pp. 519-526, December 2017. doi:10.24874/ti.2017.39.04.11
  • [32] H. Karakoç, İ. Ovalı, S. Dündar and R. Çıtak, “Wear and mechanical properties of Al6061/SiC/B4C hybrid composites produced with powder metallurgy,” Journal of Materials Research and Technology, vol. 8, no. 6, pp. 5348-5361, November–December 2019. doi:10.1016/j.jmrt.2019.09.002
  • [33] N.W. Khun, H. Zhang, L.H. Lim, C.Y. Yue, X. Hu and J. Yang, “Tribological properties of short carbon fibers reinforced epoxy composites,” Friction, vol. 2, no. 3, pp. 226-239, September 2014. doi:10.1007/s40544-014-0043-5
  • [34] L. Chang, Z. Zhang, H. Zhang and K. Friedrich, “Effect of nanoparticles on the tribological behaviour of short carbon fibre reinforced poly (etherimide) composites,” Tribology International, vol. 38, no. 11–12, pp. 966-973, November 2005–December 2006. doi: 10.1016/j.triboint.2005.07.026
  • [35] K. Hashima, S. Nishitsuji and T. Inoue, “Structure-properties of super-tough PLA alloy with excellent heat resistance,” Polymer, vol. 51, no. 17, pp. 3934-3939, August 2010. doi: 10.1016/j.polymer.2010.06.045.
  • [36] R. Muntean, S. Ambruș, N.-A. Sîrbu and I. D. Uţu, “Tribological properties of different 3D printed PLA filaments,” In Nano Hybrids and Composites, vol. 36, pp. 103–111, June 2022. doi: 10.4028/p-8k2v92
  • [37] S.Z. Hervan. A. Altınkaynak and Z. Parlar, “Hardness, friction and wear characteristics of 3D-printed PLA polymer,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol.235, no. 8, pp. 1590-1598, October 2020. doi:10.1177/1350650120966407
  • [38] K. Dass, S.R. Chauhan and B. Gaur, “Study on the effects of nano-aluminum-oxide particulates on mechanical and tribological characteristics of chopped carbon fiber reinforced epoxy composites,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 231, no. 4, pp.403-422, 2017. doi:10.1177/1464420715598798
  • [39] A.K. Sood, R.K. Ohdar and S.S. Mahapatra, “Parametric appraisal of mechanical property of fused deposition modelling processed parts,” Materials & Design, vol. 31, no. 1, pp. 287-295, January 2010. doi: 10.1016/j.matdes.2009.06.016