Tırnaklı Birleştirmelerde Sıkma/Çözme Kuvvetinin Malzeme Türü ve Sürtünme Katsayısına Göre Yapay Sinir Ağları Metodu ile Modellenmesi

Bu çalışmada Tırnaklı Birleştirmelerin (Snap-Fit) sıkma/çözme kuvvetlerinin hesaplanması için bir Yapay Sinir Ağı Modeli geliştirilmiştir. Bu hesaplamanın Bilgisayar Destekli Tasarım metodolojisi kullanılarak sıkma/çözme kuvvetinin belirlenmesi için, tırnaklı birleştirme bağlantı tasarım modelinin uç açısı (α) ve malzeme türlerinin sürtünme katsayıları referans alınmıştır.  Bu amaç ile bir Yapay Sinir Ağı (YSA) modeli geliştirilmiştir.  Bu sayede malzeme türü ve tırnaklı bağlantının uç açısı verilerek herhangi bir mühendislik hesabına gerek kalmaksızın, Bilgisayar destekli sonuç hesap edebilen bir yazılım geliştirilmiştir. Elde edilen modelin MEP% = 0.624073, RMSE= 0.008977 ve R2= 0.99999 olarak bulunmuştur.  Böyle hem güvenilir hem de hızlı bir yöntem ile malzeme türü ve bağlantı tırnak ucunun açısal değerlerine göre sonuç üretebilen bir Tasarım yöntemi geliştirilmiştir. 
Anahtar Kelimeler:

I Snap-Fit, Makina Tasarımı

Modeling of Mating / Seperating Force in Snap-Fit Joints by Artificial Neural Networks Method by Material Type and Friction Coefficient

In this study, an Artificial Neural Network Model has been developed to calculate the mating / separating forces of Snap-Fit joints. In order to determine the mating / separating force of this calculation using Computer Aided Design methodology, the tip angle (α) and friction coefficients of material types are taken as reference. For this purpose, an Artificial Neural Network (ANN) model has been developed. In this way, the material type and the end angle of the claw connection is given, without the need for any engineering account, a software capable of calculating computer-aided results has been developed. MEP% = 0.624073, RMSE = 0.008977 and R2 = 0.99999. With such a reliable and fast method, a Design method has been developed which can produce results according to the material type and the angular values of the connection snap-fit type.

___

  • [1] Paul R. Bonenberger , The First Snapfits Handbook : Creating Attachments for Plastic Parts, Munich : Hanser, Cincinnati : Hanser/Gardner, 2000.
  • [2] W. McMaster and C. S. Lee, “Designing with “L-” and “U-” Shaped Snap Fits”, Journal of Reınforced Plastıcs And Composıtes, vol. 20, no. 13, pp. 1150-1160, 2001, Doi: 10.1106/590R-UNHN-LF82-HDXH
  • [3] G. Suri and A.F. Luscher,” Development of Analytical Model of Cantilever Hook Performance”, Journal of Mechanical Design, vol. 128(2), pp. 479-493, 2006, Doi:10.1115/1.2168468
  • [4] J. R. Annis, “The Mechanics and Optimization of Cantilever Snap Joints”, Rockwell Automation, pp. 1 – 12, 2004
  • [5] R.W.Messler, S. Genc and G.A. Gabriele,” Integral attachment using snap-fit features: a key to assembly automation. Part 1 – introduction to integral attachment using snap-fit features”, Assembly Automation, vol. 17(2), pp. 143–155, 1997, Doi:10.1108/01445159710171365
  • [6] R.W.Messler, S. Genc and G.A. Gabriele,” Integral attachment using snap-fit features: a key to assembly automation. Part 2 - bringing order to integral attachment: attachment-level design” Assembly Automation, vol.17(2), pp.156-165, 1997, Doi:10.1108/EUM0000000004328
  • [7] R.W.Messler, S. Genc and G.A. Gabriele,” Research articles Integral attachment using snap‐fit features: a key to assembly automation. Part 3 ‐ an attachment‐level design methodology",Assembly Automation, vol. 17(3), pp. 239-248, 1997, Doi:10.1108/01445159710172445
  • [8] R.W.Messler, S. Genc and G.A. Gabriele,” Integral attachment using snap‐fit features: a key to assembly automation. Part 4 ‐ selection of locking features", Assembly Automation, vol.17(4), pp.315-328,1997, Doi:10.1108/01445159710191606
  • [9] S. Genc, R.W.Messler and G.A. Gabriele,” Integral attachment using snap‐fit features: a key to assembly automation. Part 5 ‐ a procedure to constrain parts fully and generate alternative attachment concepts", Assembly Automation, vol. 18(1), pp.68-74, 1998, Doi:10.1108/01445159810201298
  • [10] S. Genc, R.W.Messler and G.A. Gabriele,” Integral attachment using snap‐fit features: a key to assembly automation. Part 6 ‐ evaluating alternatives for design optimization", Assembly Automation, vol.18(2), pp.153-165, 1998, Doi:10.1108/01445159810211873
  • [11] S. Genc, R.W.Messler and G.A. Gabriele,” Integral attachment using snap‐fit features: a key to assembly automation. Part 7 ‐ testing the conceptual design methodology with a case study", Assembly Automation, vol. 18 (3),pp.223-236, 1998, Doi:10.1108/01445159810224851
  • [12] H. Li, J. Ortega, Y. Chen, B. He and K. Jin, “Study of shape memory polymers snap-fit for disassembly”, Assembly Automation, vol. 32(3), pp. 245–250, 2012, Doi:10.1108/01445151211244384
  • [13] J. Carrell, D. Tate, S. Wang and Hong-Chao Zhang, “Shape memory polymer snap-fits for active disassembly”, Journal of Cleaner Production, vol.19, pp. 2066-2074, 2011, Doi:10.1016/j.jclepro.2011.06.027
  • [14] B. He, H. Li and K. Jin, “Shape memory polymer actuated hollow snap-fit design analysis”, Materials and Design, vol. 47, pp. 539–550, 2013, Doi:10.1016/j.matdes.2012.12.038
  • [15] G. Taguchi and S. Konishi, “Taguchi methods, orthogonal arrays and linear graphs, tools for quality engineering”, Dearborn, MI: American supplier Institute, pp. 35-38,1987