Kriyojenik İşlemin 1.2436 Çeliğin Mikro Yapısı, Sertliği ve Aşınma Davranışı Üzerindeki Etkileri

Bu çalışma, kriyojenik işlemin 1.2436 çeliğinin sertlik, aşınma direnci ve mikro yapı değişiklikleri üzerindeki etkilerini araştırmaktadır. Çalışmada su verilmiş çelik numunelere -80 °C'de 6 saat sığ ve -180 °C'de 6 saat derin kriyojenik işlem uygulanmıştır. Ayrıca çelik parçalar farklı aşamalarda 300 °C'de 2 saat süreyle temperleme işlemine tabi tutulmuştur. Mikroyapı görüntülerinde kriyojenik işlemin 1.2436 çelikte daha homojen bir karbür dağılımı sağladığı görülmüştür. Kriyojenik işlem aynı zamanda 1.2436 çeliğin aşınma direncini ve sertliğini de önemli ölçüde etkilemiştir. Derin kriyojenik işlem, sığ kriyojenik işleme göre daha yüksek sertlik ve aşınma direnci sağlamıştır. En yüksek sertlik, su verme ile kriyojenik işlem arasında temperleme ısıl işleminin uygulandığı numunede, en yüksek aşınma direnci ise su verme ve kriyojenik işlemden sonra temperleme ısıl işleminin uygulandığı numunede elde edilmiştir.

Effects of Cryogenic Treatment on the Microstructure, Hardness, and Wear Behavior of 1.2436 Steel

This study investigates the affects of cryogenic treatment on the hardness, wear resistance, and microstructure changes of 1.2436 steel. In the study, shallow at −80 °C for 6 hours and deep cryogenic treatment at −180 °C for 6 hours were applied on quenched steel samples. In addition, the steel pieces were exposed to tempering at 300 °C for 2 hours at different stages. In the microstructure images, it was seen that the cryogenic treatment provided a more homogeneous carbide distribution in 1.2436 steel. The cryogenic treatment also substantially affected the wear resistance and hardness of 1.2436 steel. Deep cryogenic treatment provided higher hardness and wear resistance than shallow cryogenic treatment. The paramount hardness was acquired in the sample in which the tempering heat treatment was carried out between quenching and cryogenic treatment, and the paramount wear resistance was acquired in the piece in which the tempering heat treatment was performed after quenching and cryogenic treatment.

___

  • [1] E. Saraç and N. Altan Özbek, “Effect of tempering temperature on mechanical properties and microstructure of AISI 4140 and AISI 4340 tempered steels,” Materials Testing, vol. 64, no. 6, pp. 832–841, 2022. doi:10.1515/mt-2021-2151
  • [2] N. Altan Özbek and E. Saraç, “Effects of tempering heat treatment temperatures on mechanical properties of carbon steels,” Gazi Journal of Engineering Sciences, vol. 7, no. 1, pp. 17–25, 2021. doi:10.30855/gmbd.2021.01.03
  • [3] T. Teker, İ. S. Dalmış, and R. Yılmaz, “Effect of heat treatment on the wear behavior of GX200Cr13Ni6WMoMn,” Materials Testing, vol. 61, no. 5, pp. 441–447, 2019. doi:10.3139/120.111339
  • [4] S. Zhirafar, A. Rezaeian, and M. Pugh, “Effect of cryogenic treatment on the mechanical properties of 4340 steel,” Journal of Materials Processing Technology, vol. 186, no. 1–3, pp. 298–303, 2007. doi:10.1016/j.jmatprotec.2006.12.046
  • [5] A. Bensely, A. Prabhakaran, D. Mohan Lal, and G. Nagarajan, “Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment,” Cryogenics, vol. 45, no. 12, pp. 747–754, 2005. doi:10.1016/j.cryogenics.2005.10.004.
  • [6] E. Yıldız and N. Altan Özbek, “Effect of cryogenic treatment and tempering temperature on mechanical and microstructural properties of AISI 431 steel,” International Journal of 3D Printing Technologies and Digital Industry, vol. 6, no. 1, pp. 74–82, 2022. doi:10.46519/ij3dptdi.1092720
  • [7] N. Altan Özbek and O. Özbek, “Effect of cryogenic treatment holding time on mechanical and microstructural properties of Sverker 21 steel,” Materials Testing, vol. 64, no. 12, pp. 1809–1817, 2022. doi:10.1515/mt-2022-0207
  • [8] A. Akhbarizadeh, A. Shafyei, and M. A. Golozar, “Effects of cryogenic treatment on wear behavior of D6 tool steel,” Materials and Design, vol. 30, no. 8, pp. 3259–3264, 2009. doi:10.1016/j.matdes.2008.11.016
  • [9] R. Braun, “Slow Strain Rate Testing of Aluminum Alloy 7050 in Different Tempers Using Various Synthetic Environments,” Corrosion (Houston), vol. 53, no. 6, pp. 467–474, 1997. doi:10.5006/1.3280489
  • [10] N. Altan Özbek and O. Özbek, “Investigation of the effects of shallow cryogenic treatment on the mechanical and microstructural properties of 1.2436 tool steel,” Journal of Materials and Mechatronics: A (JournalMM), vol. 3, no. 2, pp. 151–162, 2022. doi:10.55546/jmm.1113194
  • [11] N. A. Özbek, A. Çiçek, M. Gülesin, and O. Özbek, “Investigation of the effects of cryogenic treatment applied at different holding times to cemented carbide inserts on tool wear,” International Journal of Machine Tools and Manufacture, vol. 86, pp. 34–43, 2014. doi:10.1016/j.ijmachtools.2014.06.007
  • [12] P. Baldissera and C. Delprete, “Effects of deep cryogenic treatment on static mechanical properties of 18NiCrMo5 carburized steel,” Materials and Design, vol. 30, no. 5, pp. 1435–1440, 2009. doi:10.1016/j.matdes.2008.08.015
  • [13] N. A. Özbek, “Effects of cryogenic treatment types on the performance of coated tungsten tools in the turning of AISI H11 steel,” Journal of Materials Research and Technology, vol. 9, no. 4, pp. 9442-9456, 2020. doi:10.1016/j.jmrt.2020.03.038
  • [14] O. Özbek, “Investigation of the effects of cryogenic process on friction sStir welding,” Gazi Journal of Engineering Sciences, vol. 8, no. 3, pp. 472–479, 2022. doi:10.30855/gmbd.0705035
  • [15] B. Li, C. Li, Y. Wang, and X. Jin, “Effect of cryogenic treatment on microstructure and wear resistance of carburized 20CrNi2MoV steel,” Metals, vol. 8, no. 10, p. 808, 2018. doi:10.3390/met8100808
  • [16] J. D. Darwin, D. Mohan Lal, and G. Nagarajan, “Optimization of cryogenic treatment to maximize the wear resistance of 18% Cr martensitic stainless steel by Taguchi method,” Journal of Materials Processing Technology, vol. 195, no. 1–3, pp. 241–247, 2008. doi:10.1016/j.jmatprotec.2007.05.005
  • [17] N. Altan Özbek, O. Özbek, and F. Kara, “Investigation of The Effects of Cryogenic Treatment on AISI H11 Steel,” International Marmara Science and Social Sciences Congress (IMASCON), Nowember 2018, Kocaeli, Türkiye, pp. 1936–1942, Available: https://www.researchgate.net/profile/Nursel-Oezbek/publication/356143988_Investigation_of_the_effects_of_cryogenic_treatment_on_AISI_H11_steel/links/618d28c2d7d1af224bd5e3b4/Investigation-of-the-effects-of-cryogenic-treatment-on-AISI-H11-steel.pdf
  • [18] J. Soleimany, H. Ghayour, K. Amini, and F. Gharavi, “The Effect of Deep Cryogenic Treatment on Microstructure and Wear Behavior of H11 Tool Steel,” Physics of Metals and Metallography, vol. 120, no. 9, pp. 888–897, 2019. doi:10.1134/S0031918X19090035
  • [19] M. Koneshlou, K. Meshinchi Asl, and F. Khomamizadeh, “Effect of cryogenic treatment on microstructure, mechanical and wear behaviors of AISI H13 hot work tool steel,” Cryogenics, vol. 51, no. 1, pp. 55–61, 2011. doi:10.1016/j.cryogenics.2010.11.001
  • [20] A. Bensely et al., “Fatigue behaviour and fracture mechanism of cryogenically treated En 353 steel,” Materials and Design, vol. 30, no. 8, pp. 2955–2962, 2009. doi:10.1016/j.matdes.2009.01.003
  • [21] A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini, and K. H. Stiasny, “Effect of deep cryogenic treatment on the mechanical properties of tool steels,” Journal of Materials Processing Technology, vol. 118, no. 1–3, pp. 350–355, 2001. doi:10.1016/S0924-0136(01)00973-6. [22] A. Bensely, S. Venkatesh, D. Mohan Lal, G. Nagarajan, A. Rajadurai, and K. Junik, “Effect of cryogenic treatment on distribution of residual stress in case carburized En 353 steel,” Materials Science and Engineering A, vol. 479, no. 1–2, pp. 229–235, 2008. doi:10.1016/j.msea.2007.07.035
  • [23] G. F. Vander, Metallographic techniques for tool steels, in Metallographic techniques for tool steels, Ohio, ASM International, 2004. doi:10.31399/asm.hb.v09.9781627081771
  • [24] C. sheng Li, B. zhou Li, X. Jin, and Y. Wang, “Microstructure and mechanical properties in core of a carburizing 20CrNi2MoV bearing steel subjected to cryogenic treatment,” Journal of Iron and Steel Research International, vol. 28, no. 3, pp. 360–369, 2021. doi:10.1007/s42243-020-00516-8
  • [25] D. hui Li et al., “Effects of traditional heat treatment and a novel deep cryogenic treatment on microstructure and mechanical properties of low-carbon high-alloy martensitic bearing steel,” Journal of Iron and Steel Research International, vol. 28, no. 3, pp. 370–382, 2021. doi:10.1007/s42243-020-00527-5
  • [26] A. Bensely, D. Senthilkumar, D. Mohan Lal, G. Nagarajan, and A. Rajadurai, “Effect of cryogenic treatment on tensile behavior of case carburized steel-815M17,” Materials Characterization, vol. 58, no. 5, pp. 485–491, 2007. doi:10.1016/j.matchar.2006.06.019
  • [27] F. Kara, O. Özbek, N. Altan Özbek, and İ. Uygur, “Investigation of the effect of deep cryogenic process on residual stress and residual austenite,” Gazi Journal of Engineering Sciences, vol. 7, no. 2, pp. 3–11, 2021. doi:10.30855/gmbd.2021.02.07
  • [28] E. El, F. Kara, and O. Özbek, “Researching the effect of shallow cryogenic treatment on the metallurgical features of sleipner cold work tool steel,” Gazi Journal of Engineering Sciences, vol. 7, no. 2, pp. 111–120, 2021. doi:10.30855/gmbd.2021.02.04
  • [29] D. Das, A. K. Dutta, and K. K. Ray, “Sub-zero treatments of AISI D2 steel : Part I . Microstructure and hardness,” Materials Science and Engineering A, vol. 527, pp. 2182–2193, 2010. doi:10.1016/j.msea.2009.10.070
  • [30] K. S. Sekar and S. N. Murugesan, “Enhancement of Wear Resistance of D-3 Piercing Punches by Applying Cryogenic Treatment: Field and Laboratory Investigations,” Transactions of Famena, vol. 42, no. 3, pp. 71–86, 2018. doi:10.21278/TOF.42305.