Cam Elyaf ile Güçlendirilmiş Yüksek Performanslı İleri Polimerlerin Analizi

Günümüz otomobil ve elektronik endüstrisindeki hızlı gelişmeler, daha yüksek mukavemetli ve daha hafif ağırlığa sahip yüksek performanslı mühendislik polimerlerinin kullanılmasını gerekli kılmıştır. Bu çalışma, %40 cam elyaf takviyeli ve %30 cam elyaf takviyeli iki yüksek performanslı mühendislik polimerinin mekanik davranışlarını, hacimsel büzülmelerini ve reolojik özelliklerini karşılaştırmaya ve değerlendirmeye odaklanmıştır. Çekme çubukları ve dikdörtgen çubuk tipi örnekler sırasıyla üç işlem koşulu altında enjekte edildi. Enjeksiyon testlerinden çekme dayanımı, gerinim (%), darbe dayanımı, hacimsel büzülme, erime akış indeksi ve yoğunluk değerleri elde edildi. Sonuçlar, cam elyafı miktarının bir sonucu olarak% 40 cam elyaf takviyeli PPS polimerinin% 30 cam elyaf takviyeli PEI polimerinden daha iyi olduğunu ortaya koymuştur. Ayrıca, s hrinkage ile ociated olarak en iyi boyutsal stabilite, PPS polimerinin yarı kristalin doğası nedeniyle elde edilmiştir. Son olarak, bu çalışma, cam elyafı eklenmiş yüksek performanslı gelişmiş polimerlerin mühendislik uygulamalarında büyük potansiyel gösterdiğini ve elektronik ve otomotivin geliştirilmesi ve uygulanması için iyi bir potansiyel sağlayabileceğini kanıtlamıştır.

Analysis of High-Performance Advanced Polymers Reinforced with Glass Fiber

Rapid developments in today's automobile and electronics industry have made it necessary to use high-performance engineering polymers with higher strength and lighter weight. This present study focused on comparing and evaluating the mechanical behavior, volumetric shrinkage and rheological characteristics of two high performance engineering polymers 40% glass fiber reinforced and 30% glass fiber reinforced. Tensile rods and rectangular bar-type specimens were injected, under three process conditions, respectively. The values of tensile strength, strain (%), impact strength, volumetric shrinkage, melt flow index and density were obtained from the injection tests. The results exposed that the mechanical properties of 40 % glass fiber reinforced PPS polymer is better than those of 30% glass fiber reinforced PEI polymer as a result of amount of glass fiber. Moreover, the best dimensional stability associated with shrinkage has achieved due to the semi-crystalline nature of the PPS polymer. Finally, this study has proven that glass fiber added high performance advanced polymers display great potential in engineering applications, and may provide a good potential for the development and application of electronics and automotive.

___

  • [1] J. P. Beaumont, R. Nagel and R. Sherman, Successful Injection Molding: First Edition, Cincinati: Hanser/Gardner Publications Inc., 2002.
  • [2] A. Campo, Selection of Polymeric Materials, Norwich: William Andrew Publishing, 2008.
  • [3] Ö. T. Savaşçı, N. Uyanık and G. Kovalı, Plastics and Plastic Technology with Basic Lines, İstanbul: 3rd edition, PAGEV Publications, 2008.
  • [4] Moldblade, “Plastic Injection Moulding: Main Defects in Injection Moulded Parts,” 3 June 2021.https://moldblade.com/en/plasticinjection-moulding-main-defects-in-injection-moulded-parts/. [Accessed: Dec, 30, 2022]. [5] W. Liu, T. Qiu, L. Wang and W. Jiang, “Mechanical Properties and Injection Molding Processability of Glass Fiber Modified Polylactic Acid Composites,” Journal of Physics, vol. 2390, pp.1-9, 2022. doi:10.1088/1742-6596/2390/1/012012
  • [6] A. Çetin and Z. Tekiner, “The Effect of Injection Parameters on the Bending and Impact Strength of Glass Fiber Reinforced PA66,”4th International Symposium on Innovative Technologies in Engineering and Science, ISITES 2016, Antalya, Turkey, 3-5 November, 2016, pp. 59-68.
  • [7] E. Farotti and M. Natalini, Injection Molding. “Influence of Process Parameters on Mechanical Properties of Polypropylene Polymer”. A First Study, International Conference on Stress Analysis, AIAS 2017, Pisa, Italy, 6-9 September 2017, pp.256-264.
  • [8] E. A. Berihun and T. M. Bogale, “Parameter Optimization of PET Plastic Preform Bottles in Injection Molding Process Using Grey-Based Taguchi Method,” Advances in Materials Science and Engineering, vol. 4416602, pp.1-9, 2022. doi:10.1155/2022/4416602
  • [9] H. Barghikar, P. Mosaddegh, M. Masoumi, M. Ranjbar, “The Effect of Packing Phase and Mold Temperature on The Directional Warpage of Spherical Lenses Using The Injection Molding Process”, SN Applied Sciences, vol.1, 598, May 2019, doi.org/10.1007/s42452-019-0615-0
  • [10] İ. N. Yılmaz and M. A. Taşdelen, “Preparation of Glass Fiber Added Polyamide 66/Polyphthalamide Blends,” Journal of Uludağ University Engineering Faculty, vol.23,1, pp.285-296, 2018. Doi:10.17482/uumfd.350589
  • [11] X. Yan and P. Uawongsuwan, “Tensile Properties of Glass Fiber/Carbon Fiber Reinforced Polypropylene Hybrid Composites Fabricated by Direct Fiber Feeding Injection Molding Process,” International Mechanical Engineering Congress and Exposition, IMECE2016, Arizona, USA, November 11-17, 2016, pp.1-9.
  • [12] P. E. Caltagirone, R. S. Ginder, S. Ozcan, K. Li, A. M. Gay, J. Stonecash, K. X. Steirer, D. Cousins, S. P. Kline, A. T. Maxey and A. P. Stebner, “Substitution of Virgin Carbon Fiber with Low-Cost Recycled Fiber in Automotive Grade Injection Molding Polyamide 66 for Equivalent Composite Mechanical Performance with Improved Sustainability,” Composites: Part B, vol. 221, pp.1-8, 2021. doi:10.1016/j.compositesb.2021.109007
  • [13] P. Franciszczaka, E. Piesowicza and K. Kalniņš, “Manufacturing and properties of r-PETG/PET Fibre Composite–Novel Approach for Recycling of PETG Plastic Scrap into Engineering Compound for Injection Moulding,” Composites: Part B, vol. 154, pp. 430-438, 2018. doi:10.1016/j.compositesb.2018.09.023
  • [14] A. Manjunath, H. Manjushree, K. C. Nagaraja and K. G. Pranesh, “Role of E-glass Fiber on Mechanical, Thermal and Electrical Properties of Polyphenylene Sulfide (PPS) Composites,” Materials Today: Proceedings, vol. 62, pp. 5439-5443, 2022. doi:10.1016/j.matpr.2022.04.083
  • [15] P.Y. Jar, R. Mulone, Davies P, H.H. Kausch. “A Study of the Effect of Forming Temperature on the Mechanical Behavior of Carbon-Fibre/PEEK Composites,” Composite Science Technology, vol. 46, no. 1, pp.7-19, 1993. doi: 10.1016/0266-3538(93)90076-S
  • [16] S. Oshima, R. Higuchi, M. Kato, S. Minakuchi, T. Yokozeki, T. Aoki, “Cooling rate-Dependent Mechanical Properties of Polyphenylene Sulfide (PPS) and Carbon Fiber Reinforced PPS (CF/PPS),” Composites: Part A, vol. 164, 2023. doi: 10.1016/j.compositesa.2022.107250
  • [17] Z. Chen, T. Li, Y. Yang, X. Liu and R. Lv, “Mechanical and Tribological Properties of PA/PPS Blends,”, Wear, vol. 257, pp.696-707, 2004. doi:10.1016/j.wear.2004.03.013
  • [18] J. Kocsis and K. Friedrich, “Microstructural Details and the Effect of Testing Conditions on the Fracture Toughness of Injection-Moulded Poly (Phenylenesulphide) Composites,” Journal of Material Science, vol. 22, no. 3, pp. 947-961, 1987. doi:10.1007/BF01103535
  • [19] Minitab Cooperation, "Minitab Statistical Software, Release 16, Making Data Analysis Easier," State College, USA, 2007.
  • [20] ASTM International, "Standard Test Method for Tensile Properties of Plastics," ASTM D-638, ASTM International, 2002.
  • [21] ASTM International, "Standard Test Method of Measuring Shrinkage from Mold Dimensions of Thermoplastics," ASTM D-955, ASTM International, 2002.
  • [22] ASTM International, "Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastomer," Annual Book of ASTM Standards, vol. 8, no. 1, pp. 265-276, 2001
  • [23] S. Zhou, Q. Zhang, C. Wua and J. Huang, “Effect of Carbon Fiber Reinforcement on the Mechanical and Tribological Properties of Polyamide6/Polyphenylene Sulfide Composites,” Materials and Design, vol. 44, pp. 493-499, 2013. doi:10.1016/j.matdes.2012.08.029
  • [24] B. Suresha, B. N. Kumar, M. Venkataramareddy and T. Jayaraju, “Role of Micro/ Nano Fillers on Mechanical and Tribological Properties of Polyamide66/Polypropylene Composites,” Materials and Design, vol. 31, pp. 1993-2000, 2010. doi:10.1016/j.matdes.2009.10.031
  • [25] H. H. Tsou, C. C. Huang, T. W. Zhao and Z. H. Wang, “Design and Validation of Sensor Installation for Online Injection Molding Sidewall Deformation Monitoring,” Measurement, vol. 205, pp. 1-12, 2022. doi:10.1016/j.measurement.2022.112200
  • [26] ASTM International, "Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics," ASTM D-256, ASTM International, West Conshohocken, PA, 2015.