Why lncRNAs were not conserved? Is it for adaptation?

Why lncRNAs were not conserved? Is it for adaptation?

Plants are sessile organisms affected by changing environment, especially biotic and abiotic stress. Long non-coding RNAs (lncRNAs) became prominent as crucial regulators in diverse biological mechanisms, including developmental processes and stress responses such as salinity. In this study, salinity related lncRNAs were sequenced and analyzed according to homology based on rice and maize lncRNA sequences. After sequencing, 72HASATROOT and 72TARMROOT were identified as 568 bp, additionally, 72HASATSHOOT and 72TARMSHOOT were also 568 bp according to reference sequence which are the member of the natural-antisense lncRNA with 565 bp. Besides, 77HASATROOT and 77TARMROOT were identified as 676 and 644 bp, additionally, 77HASATSHOOT and 77TARMSHOOT were 666 bp according to reference sequence alignment that reference sequence was 667 bp and the sno-lncRNA member. Sequencing studies demonstrated sequence alterations resulted in secondary structure changes which may affect the adaptation of varieties in response to stress. As a conclusion, rapid evolution of lncRNAs may be another force for adaptation to changing environment in plants.

___

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. https://doi.org/10.1016/s0022-2836(05)80360-2
  • Andergassen, D., Muckenhuber, M., Bammer, P. C., Kulinski, T. M., Theussl, H.-C., Shimizu, T., Penninger, J. M., Pauler, F. M., & Hudson, Q. J. (2019). The Airn lncRNA does not require any DNA elements within its locus to silence distant imprinted genes. PLOS Genetics, 15(7), e1008268. https://doi.org/10.1371/journal.pgen.1008268
  • Ariel, F., Jegu, T., Latrasse, D., Romero-Barrios, N., Christ, A., Benhamed, M., & Crespi, M. (2014). Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop. Molecular Cell, 55(3), 383-396. https://doi.org/10.1016/j.molcel.2014.06.011
  • Boisvert, F. M., van Koningsbruggen, S., Navascués, J., & Lamond, A. I. (2007). The multifunctional nucleolus. Nature Reviews Molecular Cell Biology, 8(7), 574-585. https://doi.org/10.1038/nrm2184
  • Cartegni, L. (2003). ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Research, 31(13), 3568-3571. https://doi.org/10.1093/nar/gkg616
  • Chekanova, J. A. (2015). Long non-coding RNAs and their functions in plants. Current Opinion in Plant Biology, 27, 207-216. https://doi.org/10.1016/j.pbi.2015.08.003
  • Chen, L. L., & Carmichael, G. G. (2010). Long noncoding RNAs in mammalian cells: what, where, and why? Wiley Interdisciplinary Reviews: RNA, 1(1), 2-21. https://doi.org/10.1002/wrna.5
  • Chen, L. L., & Carmichael, G. G. (2009). Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Molecular Cell, 35(4), 467-478. https://doi.org/10.1016/j.molcel.2009.06.027
  • Cruz, J. A., & Westhof, E. (2009). The dynamic landscapes of RNA architecture. Cell, 136(4), 604-609. https://doi.org/10.1016/j.cell.2009.02.003
  • Diederichs, S. (2014). The four dimensions of noncoding RNA conservation. Trends in Genetics, 30(4), 121-123. https://doi.org/10.1016/j.tig.2014.01.004
  • Dikaya, V., El Arbi, N., Rojas-Murcia, N., Nardeli, S. M., Goretti, D., & Schmid, M. (2021). Insights into the role of alternative splicing in plant temperature response. Journal of Experimental Botany, 72(21), 7384-7403. https://doi.org/10.1093/jxb/erab234
  • Ensembl Plants, (2021). The Official Website of Ensembl Plants, http://plants.ensembl.org/barley, Last accessed on December 15, 2021.
  • ESE Finder, (2021). The Official Website of ESEfinder 3.0, http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi?process=home, Last accessed on December 15, 2021.
  • Fang, J., Zhang, F., Wang, H., Wang, W., Zhao, F., Li, Z., ... & Chu, C. (2019). Ef-cd locus shortens rice maturity duration without yield penalty. Proceedings of the National Academy of Sciences, 116(37), 18717-18722. https://doi.org/10.1073/pnas.1815030116
  • Fanucchi, S., Fok, E. T., Dalla, E., Shibayama, Y., Börner, K., Chang, E. Y., ... & Mhlanga, M. M. (2019). Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nature Genetics, 51(1), 138-150. https://doi.org/10.1038/s41588-018-0298-2
  • Flynn, R. A., & Chang, H. Y. (2014). Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell, 14(6), 752-761. https://doi.org/10.1016/j.stem.2014.05.014
  • Ganguly, P., Roy, D., Das, T., Kundu, A., Cartieaux, F., Ghosh, Z., & DasGupta, M. (2021). The natural antisense transcript DONE40 derived from the lncRNA ENOD40 locus interacts with SET domain protein ASHR3 during inception of symbiosis in Arachis hypogaea. Molecular Plant-Microbe Interactions, 34(9), 1057-1070. https://doi.org/10.1094/mpmi-12-20-0357-r
  • Ghorbani, F., Abolghasemi, R., Haghighi, M., Etemadi, N., Wang, S., Karimi, M., & Soorni, A. (2021). Global identification of long non-coding RNAs involved in the induction of spinach flowering. BMC Genomics, 22(1). https://doi.org/10.1186/s12864-021-07989-1
  • Goff, L. A., & Rinn, J. L. (2015). Linking RNA biology to lncRNAs. Genome Research, 25(10), 1456-1465. https://doi.org/10.1101/gr.191122.115
  • Grossi, E., Raimondi, I., Goñi, E., González, J., Marchese, F. P., Chapaprieta, V., Martín-Subero, J. I., Guo, S., & Huarte, M. (2020). A lncRNA-SWI/SNF complex crosstalk controls transcriptional activation at specific promoter regions. Nature Communications, 11(1), 1-16. https://doi.org/10.1038/s41467-020-14623-3
  • Guo, C. J., Ma, X. K., Xing, Y. H., Zheng, C. C., Xu, Y. F., Shan, L., ... & Chen, L. L. (2020). Distinct processing of lncRNAs contributes to non-conserved functions in stem cells. Cell, 181(3), 621-636. https://doi.org/10.1016/j.cell.2020.03.006
  • Guttman, M., Amit, I., Garber, M., French, C., Lin, M. F., Feldser, D., ... & Lander, E. S. (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 458(7235), 223-227. https://doi.org/10.1038/nature07672
  • Hebsgaard, S. (1996). Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Research, 24(17), 3439-3452. https://doi.org/10.1093/nar/24.17.3439
  • Heo, J. B., & Sung, S. (2011). Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science, 331(6013), 76-79. https://doi.org/10.1126/science.1197349
  • Hezroni, H., Ben-Tov Perry, R., Meir, Z., Housman, G., Lubelsky, Y., & Ulitsky, I. (2017). A subset of conserved mammalian long non-coding RNAs are fossils of ancestral protein-coding genes. Genome Biology, 18(1), 1-15. https://doi.org/10.1186/s13059-017-1293-0
  • Hezroni, H., Koppstein, D., Schwartz, Matthew G., Avrutin, A., Bartel, David P., & Ulitsky, I. (2015). Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Reports, 11(7), 1110-1122. https://doi.org/10.1016/j.celrep.2015.04.023
  • Hilker, M., & Schmülling, T. (2019). Stress priming, memory, and signalling in plants. Plant, Cell & Environment, 42(3), 753-761. https://doi.org/10.1111/pce.13526
  • Johnsson, P., Ackley, A., Vidarsdottir, L., Lui, W.-O., Corcoran, M., Grandér, D., & Morris, K. V. (2013). A pseudogene long noncoding RNA network regulates PTEN transcription and translation in human cells. Nature Structural & Molecular Biology, 20(4), 440-446. https://doi.org/10.1038/nsmb.2516
  • Johnsson, P., Lipovich, L., Grandér, D., & Morris, K. V. (2014). Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(3), 1063-1071. https://doi.org/10.1016/j.bbagen.2013.10.035
  • Kang, Y.-J., Yang, D.-C., Kong, L., Hou, M., Meng, Y.-Q., Wei, L., & Gao, G. (2017). CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Research, 45(W1), W12-W16. https://doi.org/10.1093/nar/gkx428
  • Karlik, E., & Gozukirmizi, N. (2018). Evaluation of barley lncRNAs expression analysis in salinity stress. Russian Journal of Genetics, 54(2), 198-204. https://doi.org/10.1134/s1022795418020096
  • Khalil, A. M., Guttman, M., Huarte, M., Garber, M., Raj, A., Morales, D. R., ... & Rinn, J. L. (2009). Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences, 106(28), 11667-11672. https://doi.org/10.1073/pnas.0904715106
  • Kiss, T. (2001). New embo member’s review: Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. The EMBO Journal, 20(14), 3617-3622. https://doi.org/10.1093/emboj/20.14.3617
  • Kortmann, J., & Narberhaus, F. (2012). Bacterial RNA thermometers: molecular zippers and switches. Nature Reviews Microbiology, 10(4), 255-265. https://doi.org/10.1038/nrmicro2730
  • Kutter, C., Watt, S., Stefflova, K., Wilson, M. D., Goncalves, A., Ponting, C. P., Odom, D. T., & Marques, A. C. (2012). Rapid turnover of long noncoding RNAs and the evolution of gene expression. PLoS Genetics, 8(7), e1002841. https://doi.org/10.1371/journal.pgen.1002841
  • Ling, Y., Alshareef, S., Butt, H., Lozano‐Juste, J., Li, L., Galal, A. A., ... & Mahfouz, M. M. (2017). Pre‐mRNA splicing repression triggers abiotic stress signaling in plants. The Plant Journal, 89(2), 291-309. https://doi.org/10.1111/tpj.13383
  • Lorenz, R., Bernhart, S. H., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P. F., & Hofacker, I. L. (2011). ViennaRNA Package 2.0. Algorithms for Molecular Biology, 6(1). https://doi.org/10.1186/1748-7188-6-26
  • Marques, A. C., & Ponting, C. P. (2009). Catalogues of mammalian long noncoding RNAs: modest conservation and incompleteness. Genome Biology, 10(11), 1-12. https://doi.org/10.1186/gb-2009-10-11-r124
  • Matera, A. G., Terns, R. M., & Terns, M. P. (2007). Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nature Reviews Molecular Cell Biology, 8(3), 209-220. https://doi.org/10.1038/nrm2124
  • Mattick, J. S., & Rinn, J. L. (2015). Discovery and annotation of long noncoding RNAs. Nature Structural & Molecular Biology, 22(1), 5-7. https://doi.org/10.1038/nsmb.2942
  • Narberhaus, F. (2010). Translational control of bacterial heat shock and virulence genes by temperature-sensing mRNAs. RNA biology, 7(1), 84-89. https://doi.org/10.4161/rna.7.1.10501
  • NCBI, (2021). The Official Website of National Center for Biotechnology Information, https://www.ncbi.nlm.nih.gov/orffinder, Last accessed on December 15, 2021.
  • Necsulea, A., Soumillon, M., Warnefors, M., Liechti, A., Daish, T., Zeller, U., Baker, J. C., Grützner, F., & Kaessmann, H. (2014). The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature, 505(7485), 635-640. https://doi.org/10.1038/nature12943
  • Nitsche, A., & Stadler, P. F. (2017). Evolutionary clues in lncRNAs. Wiley Interdisciplinary Reviews: RNA, 8(1), e1376. https://doi.org/10.1002/wrna.1376
  • Qi, Y., Zhang, Y., Zheng, G., Chen, B., Zhang, M., Li, J., Peng, T., Huang, J., & Wang, X. (2021). In vivo and in vitro genome-wide profiling of RNA secondary structures reveals key regulatory features in Plasmodium falciparum. Frontiers in Cellular and Infection Microbiology, 11, 673966. https://doi.org/10.3389/fcimb.2021.673966
  • Ramírez-Colmenero, A., Oktaba, K., & Fernandez-Valverde, S. L. (2020). Evolution of genome-organizing long non-coding RNAs in metazoans. Frontiers in Genetics, 11(589697). https://doi.org/10.3389/fgene.2020.589697
  • Ren, J., Jiang, C., Zhang, H., Shi, X., Ai, X., Li, R., Dong, J., Wang, J., Zhao, X., & Yu, H. (2021). LncRNA‐mediated ceRNA networks provide novel potential biomarkers for peanut drought tolerance. Physiologia Plantarum, e13610. https://doi.org/10.1111/ppl.13610
  • Rinn, J. L., & Chang, H. Y. (2012). Genome Regulation by Long Noncoding RNAs. Annual Review of Biochemistry, 81(1), 145-166. https://doi.org/10.1146/annurev-biochem-051410-092902
  • Rivas, E., & Eddy, S. R. (2000). Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. Bioinformatics, 16(7), 583-605. https://doi.org/10.1093/bioinformatics/16.7.583
  • RNAfold Server, (2021). The Official Website of RNAfold Web Server, http://rna.tbi.univie.ac.at, Last accessed on December 15, 2021.
  • Sahoo, T., del Gaudio, D., German, J. R., Shinawi, M., Peters, S. U., Person, R. E., Garnica, A., Cheung, S. W., & Beaudet, A. L. (2008). Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nature Genetics, 40(6), 719-721. https://doi.org/10.1038/ng.158
  • Salzman, J., Gawad, C., Wang, P. L., Lacayo, N., & Brown, P. O. (2012). Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE, 7(2), e30733. https://doi.org/10.1371/journal.pone.0030733
  • Simpson, C. G., Fuller, J., Calixto, C. P. G., McNicol, J., Booth, C., Brown, J. W. S., & Staiger, D. (2016). Monitoring alternative splicing changes in Arabidopsis circadian clock genes. Methods in Molecular Biology, 1398, 119-132. https://doi.org/10.1007/978-1-4939-3356-3_11
  • Smith, P. J., Zhang, C., Wang, J., Chew, S. L., Zhang, M. Q., & Krainer, A. R. (2006). An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Human Molecular Genetics, 15(16), 2490-2508. https://doi.org/10.1093/hmg/ddl171
  • Soibam, B., & Zhamangaraeva, A. (2021). LncRNA:DNA triplex-forming sites are positioned at specific areas of genome organization and are predictors for Topologically Associated Domains. BMC Genomics, 22(1), 1-10. https://doi.org/10.1186/s12864-021-07727-7
  • Song, Y., Wang, R., Li, L. W., Liu, X., Wang, Y. F., Wang, Q. X., & Zhang, Q. (2019). Long non-coding RNA HOTAIR mediates the switching of histone H3 lysine 27 acetylation to methylation to promote epithelial-to-mesenchymal transition in gastric cancer. International Journal of Oncology, 54(1), 77-86. https://doi.org/10.3892/ijo.2018.4625
  • Statello, L., Guo, C.-J., Chen, L. L., & Huarte, M. (2021). Gene regulation by long non-coding RNAs and its biological functions. Nature Reviews Molecular Cell Biology, 22(2), 96-118. https://doi.org/10.1038/s41580-020-00315-9
  • Swiezewski, S., Liu, F., Magusin, A., & Dean, C. (2009). Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature, 462(7274), 799-802. https://doi.org/10.1038/nature08618
  • Szcześniak, M. W., Rosikiewicz, W., & Makałowska, I. (2016). CANTATAdb: a collection of plant long non-coding RNAs. Plant and Cell Physiology, 57(1), e8-e8. https://doi.org/10.1093/pcp/pcv201
  • Tavares, R. C. A., Pyle, A. M., & Somarowthu, S. (2019). Phylogenetic analysis with improved parameters reveals conservation in lncRNA structures. Journal of Molecular Biology, 431(8), 1592-1603. https://doi.org/10.1016/j.jmb.2019.03.012
  • Tsagakis, I., Douka, K., Birds, I., & Aspden, J. L. (2020). Long non‐coding RNAs in development and disease: conservation to mechanisms. The Journal of Pathology, 250(5), 480-495. https://doi.org/10.1002/path.5405 Ulitsky, I., & Bartel, D. P. (2013). lincRNAs: genomics, evolution, and mechanisms. Cell, 154(1), 26-46. https://doi.org/10.1016/j.cell.2013.06.020
  • Ulitsky, I., Shkumatava, A., Jan, Calvin H., Sive, H., & Bartel, David P. (2011). Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell, 147(7), 1537-1550. https://doi.org/10.1016/j.cell.2011.11.055
  • Verhage, L., Severing, E. I., Bucher, J., Lammers, M., Busscher-Lange, J., Bonnema, G., ... & Immink, R. G. (2017). Splicing-related genes are alternatively spliced upon changes in ambient temperatures in plants. PloS One, 12(3), e0172950. https://doi.org/10.1371/journal.pone.0172950
  • Wan, Y., Qu, K., Ouyang, Z., Kertesz, M., Li, J., Tibshirani, R., ... & Chang, H. Y. (2012). Genome-wide measurement of RNA folding energies. Molecular Cell, 48(2), 169-181. https://doi.org/10.1016/j.molcel.2012.08.008
  • Wang, L., Park, H. J., Dasari, S., Wang, S., Kocher, J. P., & Li, W. (2013). CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Research, 41(6), e74–e74. https://doi.org/10.1093/nar/gkt006
  • Wang, Y., Fan, X., Lin, F., He, G., Terzaghi, W., Zhu, D., & Deng, X. W. (2014). Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light. Proceedings of the National Academy of Sciences, 111(28), 10359-10364. https://doi.org/10.1073/pnas.1409457111
  • Wilusz, J. E. (2016). Long noncoding RNAs: re-writing dogmas of RNA processing and stability. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1859(1), 128-138. https://doi.org/10.1016/j.bbagrm.2015.06.003
  • Wood, E. J., Chin-Inmanu, K., Jia, H., & Lipovich, L. (2013). Sense-antisense gene pairs: sequence, transcription, and structure are not conserved between human and mouse. Frontiers in Genetics, 4, 183. https://doi.org/10.3389/fgene.2013.00183
  • Yang, L., Duff, M. O., Graveley, B. R., Carmichael, G. G., & Chen, L.-L. (2011). Genomewide characterization of non-polyadenylated RNAs. Genome Biology, 12(2), R16. https://doi.org/10.1186/gb-2011-12-2-r16
  • Yeo, G., Holste, D., Kreiman, G., & Burge, C. B. (2004). Variation in alternative splicing across human tissues. Genome Biology, 5(10), 1-15. https://doi.org/10.1186/gb-2004-5-10-r74
  • Yin, Q. F., Yang, L., Zhang, Y., Xiang, J. F., Wu, Y. W., Carmichael, Gordon G., & Chen, L. L. (2012). Long noncoding RNAs with snoRNA ends. Molecular Cell, 48(2), 219-230. https://doi.org/10.1016/j.molcel.2012.07.033
  • Young, R. S., Marques, A. C., Tibbit, C., Haerty, W., Bassett, A. R., Liu, J. L., & Ponting, C. P. (2012). Identification and properties of 1,119 candidate lincRNA loci in the Drosophila melanogaster genome. Genome Biology and Evolution, 4(4), 427-442. https://doi.org/10.1093/gbe/evs020
  • Zhang, Y. C., Liao, J. Y., Li, Z. Y., Yu, Y., Zhang, J. P., Li, Q. F., ... & Chen, Y. Q. (2014). Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biology, 15(12), 1-16. https://doi.org/10.1186/s13059-014-0512-1
  • Zhang, Z., & Xiao, B. (2018). Comparative alternative splicing analysis of two contrasting rice cultivars under drought stress and association of differential splicing genes with drought response QTLs. Euphytica, 214(4), 1-16. https://doi.org/10.1007/s10681-018-2152-0