Karaciğer hücreleri ve organoidlerin üç boyutlu kültürlerinde kullanılmak üzere geliştirilmiş biyomalzemeler

Doku mühendisliği ve biyomühendislik çalışmaları başta olmak üzere biyoloji ve kimya gibi temel bilimlerin son zamanlarda üzerinde odaklandığı disiplinlerarası bir çalışma olan 3 boyutlu (3B) biyobasım tekniği en yenilikçi teknolojilerden biridir. 3 boyutlu biyobasım, yaralı veya hastalıklı doku ve organları biyolojik olarak taklit edebilecek (biomimetik) doku ve organların yapımında çeşitli uygulamalara sahip gelişmekte olan bir teknolojidir. Bu yöntemde hücreler, büyüme faktörleri ve biyomalzemeler birleştirilir ve hibrit bir biyomalzeme elde edilir. Biyomalzemeler vasıtasıyla canlı hücreler ile katman katman, istenilen şekil, miktar ve fonksiyonda hücre iskeletleri (scaffold) üretilebilir. Özellikle karaciğer gibi karmaşık dokuları oluşturmak için biyobasım tekniği ile doku iskeleleri oluşturmak oldukça önemli bir yaklaşımdır. Hem doğal hem de sentetik kökenli polimerlerden yapılan biyo bağlantılar, karaciğer gibi yumuşak dokulara baskı uygulanması noktasında avantaja sahiptir. Bu derlemede özellikle hepatositler üzerine yapılan çalışmalar incelenmiş ve derlenmiştir.

Developed biomaterials for use in three dimensional cultures of liver cells and organoids

The 3D bioprinting technique, which is an interdisciplinary study on which basic sciences such as biology and chemistry, especially tissue engineering and bioengineering studies, has recently focused on, is one of the most innovative technologies. 3D bioprinting is an emerging technology with various applications in the construction of tissues and organs that can biologically mimic injured or diseased tissues and organs (biomimetic). In this method, cells, growth factors and biomaterials are combined and a hybrid biomaterial is obtained. By means of biomaterials, cell scaffolds of desired shape, quantity and function can be produced layer by layer with living cells. Creating tissue scaffolds with bioprinting technique is a very important approach, especially to create complex tissues such as liver. Biolinks made from polymers of both natural and synthetic origin have the advantage of applying pressure to soft tissues such as the liver. In this review, studies on hepatocytes were examined and compiled.

___

  • Arai, K., Yoshida, T., Okabe, M., Goto, M., Mir, T. A., Soko, C., ... & Nakamura, M. (2017). Fabrication of 3D‐culture platform with sandwich architecture for preserving liver‐specific functions of hepatocytes using 3D bioprinter. Journal of Biomedical Materials Research Part A, 105(6), 1583-1592.
  • Bhise, N. S., Manoharan, V., Massa, S., Tamayol, A., Ghaderi, M., Miscuglio, M., ... & Khademhosseini, A. (2016). A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication, 8(1), 014101.
  • Blaeser, A., Duarte Campos, D. F., Puster, U., Richtering, W., Stevens, M. M., & Fischer, H. (2016). Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Advanced Healthcare Materials, 5(3), 326-333.
  • Bogert, P. T., & LaRusso, N. F. (2007). Cholangiocyte biology. Current Opinion in Gastroenterology, 23(3), 299-305.
  • Causa, F., Sarracino, F., De Santis, R., Netti, P. A., Ambrosio, L., & Nicolais, L. (2006). Basic structural parameters for the design of composite structures as ligament augmentation devices. Journal of Applied Biomaterials and Biomechanics, 4(1), 21-30.
  • Colosi, C., Shin, S. R., Manoharan, V., Massa, S., Costantini, M., Barbetta, A., ... & Khademhosseini, A. (2016). Microfluidic bioprinting of heterogeneous 3D tissue constructs using low‐viscosity bioink. Advanced Materials, 28(4), 677-684.
  • Elvevold, K., Smedsrød, B., & Martinez, I. (2008). The liver sinusoidal endothelial cell: a cell type of controversial and confusing identity. American Journal of Physiology-Gastrointestinal and Liver Physiology, 294(2), 391-400.
  • Fan, R., Piou, M., Darling, E., Cormier, D., Sun, J., & Wan, J. (2016). Bio-printing cell-laden Matrigel–agarose constructs. Journal of Biomaterials Applications, 31(5), 684-692.
  • Gaetani, R., Feyen, D. A., Verhage, V., Slaats, R., Messina, E., Christman, K. L., ... & Sluijter, J. P. (2015). Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials, 61, 339-348.
  • Gauvin, R., Chen, Y. C., Lee, J. W., Soman, P., Zorlutuna, P., Nichol, J. W., ... & Khademhosseini, A. (2012). Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials, 33(15), 3824-3834.
  • Gopinathan, J., & Noh, I. (2018). Recent trends in bioinks for 3D printing. Biomaterials Research, 22(1), 1-15.
  • Gori, M., Giannitelli, S. M., Torre, M., Mozetic, P., Abbruzzese, F., Trombetta, M., ... & Rainer, A. (2020). Biofabrication of hepatic constructs by 3D bioprinting of a cell‐laden thermogel: An effective tool to assess drug‐induced hepatotoxic response. Advanced Healthcare Materials, 9(21), 2001163.
  • Hiller, T., Berg, J., Elomaa, L., Röhrs, V., Ullah, I., Schaar, K., ... & Kurreck, J. (2018). Generation of a 3D liver model comprising human extracellular matrix in an alginate/gelatin-based bioink by extrusion bioprinting for infection and transduction studies. International journal of molecular sciences, 19(10), 3129.
  • Hospodiuk, M., Dey, M., Sosnoski, D., & Ozbolat, I. T. (2017). The bioink: A comprehensive review on bioprintable materials. Biotechnology advances, 35(2), 217-239.
  • Jang, J., Kim, T. G., Kim, B. S., Kim, S. W., Kwon, S. M., & Cho, D. W. (2016). Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. Acta Biomaterialia, 33, 88-95.
  • Jang, J., Park, H. J., Kim, S. W., Kim, H., Park, J. Y., Na, S. J., ... & Cho, D. W. (2017). 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials, 112, 264-274.
  • Kang, H. W., Lee, S. J., Ko, I. K., Kengla, C., Yoo, J. J., & Atala, A. (2016). A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature Biotechnology, 34(3), 312-319.
  • Kang, K., Kim, Y., Jeon, H., Lee, S. B., Kim, J. S., Park, S. A., ... & Choi, D. (2018). Three-dimensional bioprinting of hepatic structures with directly converted hepatocyte-like cells. Tissue Engineering Part A, 24(7-8), 576-583.
  • Kim, M. K., Jeong, W., Lee, S. M., Kim, J. B., Jin, S., & Kang, H. W. (2020). Decellularized extracellular matrix-based bio-ink with enhanced 3D printability and mechanical properties. Biofabrication, 12(2), 025003.
  • Kim, Y., Kang, K., Jeong, J., Paik, S. S., Kim, J. S., Park, S. A., ... & Choi, D. (2017). Three-dimensional (3D) printing of mouse primary hepatocytes to generate 3D hepatic structure. Annals of Surgical Treatment and Research, 92(2), 67-72.
  • Kim, Y., Kang, K., Yoon, S., Kim, J. S., Park, S. A., Kim, W. D., ... & Choi, D. (2018). Prolongation of liver-specific function for primary hepatocytes maintenance in 3D printed architectures. Organogenesis, 14(1), 1-12.
  • Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A., & Lewis, J. A. (2016). Three-dimensional bioprinting of thick vascularized tissues. Proceedings of the National Academy of Sciences, 113(12), 3179-3184.
  • Kreimendahl, F., Köpf, M., Thiebes, A. L., Duarte Campos, D. F., Blaeser, A., Schmitz-Rode, T., ... & Fischer, H. (2017). Three-dimensional printing and angiogenesis: tailored agarose-type I collagen blends comprise three-dimensional printability and angiogenesis potential for tissue-engineered substitutes. Tissue Engineering Part C: Methods, 23(10), 604-615.
  • Lauschke, V. M., Hendriks, D. F., Bell, C. C., Andersson, T. B., & Ingelman-Sundberg, M. (2016). Novel 3D culture systems for studies of human liver function and assessments of the hepatotoxicity of drugs and drug candidates. Chemical Research in Toxicology, 29(12), 1936-1955.
  • Lee, J. S., Yoon, H., Yoon, D., Kim, G. H., Yang, H. T., & Chun, W. (2017). Development of hepatic blocks using human adipose tissue-derived stem cells through three-dimensional cell printing techniques. Journal of Materials Chemistry B, 5(5), 1098-1107.
  • Lee, J. W., Choi, Y. J., Yong, W. J., Pati, F., Shim, J. H., Kang, K. S., ... & Cho, D. W. (2016). Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication, 8(1), 015007.
  • Lee, K. Y., & Mooney, D. J. (2012). Alginate: properties and biomedical applications. Progress in Polymer Science, 37(1), 106-126.
  • Lewis, P. L., Green, R. M., & Shah, R. N. (2018). 3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression. Acta Biomaterialia, 69, 63-70.
  • Liu, F., Chen, Q., Liu, C., Ao, Q., Tian, X., Fan, J., ... & Wang, X. (2018). Natural polymers for organ 3D bioprinting. Polymers, 10(11), 1278.
  • Mao, B., Divoux, T., & Snabre, P. (2017). Impact of saccharides on the drying kinetics of agarose gels measured by in-situ interferometry. Scientific Reports, 7, 41185.
  • Mao, Q., Wang, Y., Li, Y., Juengpanich, S., Li, W., Chen, M., ... & Cai, X. (2020a). Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Materials Science and Engineering: C, 109, 110625.
  • Mao, S., He, J., Zhao, Y., Liu, T., Xie, F., Yang, H., ... & Sun, W. (2020b). Bioprinting of patient-derived in vitro intrahepatic cholangiocarcinoma tumor model: establishment, evaluation and anti-cancer drug testing. Biofabrication, 12(4), 045014.
  • Markstedt, K., Escalante, A., Toriz, G., & Gatenholm, P. (2017). Biomimetic inks based on cellulose nanofibrils and cross-linkable xylans for 3D printing. ACS Applied Materials & Interfaces, 9(46), 40878-40886.
  • Munaz, A., Vadivelu, R. K., John, J. S., Barton, M., Kamble, H., & Nguyen, N. T. (2016). Three-dimensional printing of biological matters. Journal of Science: Advanced Materials and Devices, 1(1), 1-17.
  • Muller, M., Ozturk, E., Arlov, Ø., Gatenholm, P., & Zenobi-Wong, M. (2017). Alginate sulfate–nanocellulose bioinks for cartilage bioprinting applications. Annals of Biomedical Engineering, 45(1), 210-223.
  • Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology, 32(8), 773-785. Panwar, A., & Tan, L. P. (2016). Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules, 21(6), 685.
  • Park, J., Lee, S. J., Chung, S., Lee, J. H., Kim, W. D., Lee, J. Y., & Park, S. A. (2017). Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: Characterization and evaluation. Materials Science and Engineering: C, 71, 678-684.
  • Pati, F., Ha, D. H., Jang, J., Han, H. H., Rhie, J. W., & Cho, D. W. (2015). Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials, 62, 164-175.
  • Pati, F., Jang, J., Ha, D. H., Kim, S. W., Rhie, J. W., Shim, J. H., ... & Cho, D. W. (2014). Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nature Communications, 5(1), 1-11.
  • Pepelanova, I., Kruppa, K., Scheper, T., & Lavrentieva, A. (2018). Gelatin-methacryloyl (GelMA) hydrogels with defined degree of functionalization as a versatile toolkit for 3D cell culture and extrusion bioprinting. Bioengineering, 5(3), 55.
  • Sarkar, J., Kamble, S.C., Kashikar, N.C. (2021). Polymeric Bioinks for 3D Hepatic Printing. Chemistry, 3(1), 164-181. Sarkar, J., Kamble, S.C., Patil, R., Kumar, A., Gosavi, S.W. (2020). Gelatin Interpenetration in Poly N-isopropylacrylamide Network Reduces the Compressive Modulus of the Scaffold: A Property Employed to Mimic Hepatic Matrix Stiffness. Biotechnology and Bioengineering, 117, 567–579.
  • Stanton, M. M., Samitier, J., & Sanchez, S. (2015). Bioprinting of 3D hydrogels. Lab on a Chip, 15(15), 3111-3115. Stratesteffen, H., Köpf, M., Kreimendahl, F., Blaeser, A., Jockenhoevel, S., & Fischer, H. (2017). GelMA-collagen blends enable drop-on-demand 3D printablility and promote angiogenesis. Biofabrication, 9(4), 045002.
  • Tamay, D. G., Dursun Usal, T., Alagoz, A. S., Yucel, D., Hasirci, N., & Hasirci, V. (2019). 3D and 4D printing of polymers for tissue engineering applications. Frontiers in Bioengineering and Biotechnology, 7, 164.
  • Turner, R., Lozoya, O., Wang, Y., Cardinale, V., Gaudio, E., Alpini, G., ... & Reid, L. M. (2011). Human hepatic stem cell and maturational liver lineage biology. Hepatology, 53(3), 1035-1045.
  • Wang, X. (2019a). Advanced polymers for three-dimensional (3D) organ bioprinting. Micromachines, 10(12), 814.
  • Wang, X. (2019b). Bioartificial organ manufacturing technologies. Cell Transplantation, 28(1), 5-17.
  • Wang, X., Rijff, B. L., & Khang, G. (2017). A building‐block approach to 3D printing a multichannel, organ‐regenerative scaffold. Journal of Tissue Engineering and Regenerative Medicine, 11(5), 1403-1411.
  • Wang, X., Yu, X., Yan, Y., & Zhang, R. (2008). Liver tissue responses to gelatin and gelatin/chitosan gels. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 87(1), 62-68.
  • Wang, Y., Di Wu, G. W., Wu, J., Lu, S., Lo, J., He, Y., ... & Wang, S. (2020). Metastasis-on-a-chip mimicking the progression of kidney cancer in the liver for predicting treatment efficacy. Theranostics, 10(1), 300-311.
  • Wang, Z., Abdulla, R., Parker, B., Samanipour, R., Ghosh, S., & Kim, K. (2015). A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication, 7(4), 045009.
  • Wang, Z., Kumar, H., Tian, Z., Jin, X., Holzman, J. F., Menard, F., & Kim, K. (2018). Visible light photoinitiation of cell-adhesive gelatin methacryloyl hydrogels for stereolithography 3D bioprinting. ACS Applied Materials & Interfaces, 10(32), 26859-26869.
  • Wells, R. G. (2008). Cellular sources of extracellular matrix in hepatic fibrosis. Clinics in Liver Disease, 12(4), 759-768.
  • Wu, Y., Lin, Z. Y. W., Wenger, A. C., Tam, K. C., & Tang, X. S. (2018). 3D bioprinting of liver-mimetic construct with alginate/cellulose nanocrystal hybrid bioink. Bioprinting, 9, 1-6.
  • Wu, Y., Wenger, A., Golzar, H., & Tang, X. S. (2020). 3D bioprinting of bicellular liver lobule-mimetic structures via microextrusion of cellulose nanocrystal-incorporated shear-thinning bioink. Scientific Reports, 10(1), 1-12.
  • Xiao, W., He, J., Nichol, J. W., Wang, L., Hutson, C. B., Wang, B., ... & Khademhosseini, A. (2011). Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels. Acta Biomaterialia, 7(6), 2384-2393.
  • Xie, F., Sun, L., Pang, Y., Xu, G., Jin, B., Xu, H., ... & Mao, Y. (2021). Three-dimensional bio-printing of primary human hepatocellular carcinoma for personalized medicine. Biomaterials, 265, 120416.
  • Yang, X., Lu, Z., Wu, H., Li, W., Zheng, L., & Zhao, J. (2018). Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Materials Science and Engineering: C, 83, 195-201.
  • Yue, K., Trujillo-de Santiago, G., Alvarez, M. M., Tamayol, A., Annabi, N., & Khademhosseini, A. (2015). Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 73, 254-271.