Tel Erozyon Yöntemiyle İşlenmiş Ti 6Al 4V Alaşımının Yüzey Kalitesinin Manyetik Aşındırıcılarla İşleme Yöntemiyle İyileştirilmesi

Tel erozyonla işleme (TEİ) yöntemi işlenmesi zor malzemeler grubunda yer alan Ti 6Al 4V alaşımının işlenmesinde kullanılan geleneksel olmayan bir imalat yöntemidir. Yöntemde işlenen malzeme yüzeyinde, çatlaklar, yeniden katılaşmış artık tabakalar ve kraterler gibi malzemenin mekanik özelliklerini etkileyen istenmeyen oluşumlar meydana gelmektedir. Bu oluşumların ortadan kaldırılarak hem mekanik özelliklerinin hem de yüzey kalitesinin iyileştirilmesi için ikinci bir bitirme işlemine ihtiyaç duyulmaktadır. Bu çalışmada tel erozyon yöntemiyle sabit işleme koşullarında işlenmiş olan Ti 6Al 4V alaşımından imal edilmiş olan numunelerin yüzey kaliteleri manyetik aşındırıcılarla işleme yöntemiyle artırılmıştır. Çalışmada, işleme süresi, aşındırıcı boyutu, devir sayısı ve manyetik alan miktarı parametrelerinin işlem performansı üzerindeki etkileri Taguchi L9 ortogonal dizin deneysel tasarımıyla incelenmiştir. Manyetik aşındırıcılarla işleme işlemi sonrası yüzey pürüzlülüğündeki iyileşme oranları (YPİO) ve talaş kaldırma oranları (TKO) belirlenmiştir. Numunelere ait taramalı elektron mikroskobu (SEM) görüntüleri alınmış ve yüzey özellikleri ve artık tabaka yapıları incelenmiştir. Çalışma sonucunda TKO değerlerinin işleme süresinin artmasıyla azalırken, aşındırıcı boyutu, devir sayısı ve manyetik alan miktarının artmasıyla arttığı, YPİO değerlerinin ise ortalama %92 olarak ölçüldüğü ve uygun işleme koşullarıyla bu sonucun %96 oranlarına kadar arttığı tespit edilmiştir. Artık tabaka miktarının ise yapılan bütün deneylerde tamamen ortadan kaldırıldığı tespit edilmiştir.

___

  • [1] Yang S, Li W, Yan, S, & Li W. Surface Quality and Finishing Technology. In: Surface Finishing Theory and New Technology. Berlin: Springer Heidelberg, 2018; pp.1-63.
  • [2] Chen S L, Yan B H, & Huang F Y. Influence of kerosene and distilled water as dielectrics on the electric discharge machining characteristics of Ti-6A1-4V. J Mater Process Tech 1999; 87(1–3): 107–111.
  • [3] He P, Zhang J, Zhou R, & Li X. Diffusion bonding technology of a titanium alloy to a stainless steel web with an Ni interlayer. Mater Charact 1999; 43(5): 287–292.
  • [4] Uzun İ H, Bayındır F. Dental Uygulamalarda Titanyum ve Özellikleri. Atatürk Üniv. Diş Hek. Fak. Derg. 2010; 20(2): 213-220.
  • [5] Murr L E, Quinones S A, Gaytan S M, Lopez M I, Rodela A, Martinez, E Y, … Wicker R B. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed 2009; 2(1): 20-32.
  • [6] Ulutan D, Ozel T. Machining induced surface integrity in titanium and nickel alloys: A review. Int. J. Mach. Tools Manuf. 2011; 51(3): 250-280.
  • [7] Çelik Y H, Kiliçkap, E. Titanyum Alaşımlarından Ti-6Al-4V’nın İşlenmesinde Karşılaşılan Zorluklar: Derleme. GU J Sci, Part C 2018; 6(1): 163–175.
  • [8] Minton T, Ghani S, Sammle, F, Bateman R, Fürstmann P, Roeder M. Temperature of internally-cooled diamond-coated tools for dry-cutting titanium. Int. J. Mach. Tools Manuf. 2013; 75: 27–35.
  • [9] Manjaiah M, Narendranath S, Basavarajappa S. (2014). A review on machining of titanium based alloys using EDM and WEDM. Rev. Adv. Mater. Sci. 2014; 36(2): 89–111.
  • [10] Shabgard M R, Alenabi H. Ultrasonic Assisted Electrical Discharge Machining of Ti–6Al–4V Alloy. Mater. Manuf. Processes 2015; 30(8): 991–1000.
  • [11] Lin Y C, Hung J C, Chow H M, Wang A C, Chen J T. Machining Characteristics of a Hybrid Process of EDM in Gas Combined with Ultrasonic Vibration and AJM. Procedia CIRP 2016; 42:167-172.
  • [12] Shabgard M R, Gholipoor A, Mohammadpourfard M. Numerical and experimental study of the effects of ultrasonic vibrations of tool on machining characteristics of EDM process. Int. J. Adv. Manuf. Technol. 2018; 96(5–8): 2657–2669.
  • [13] Le V T, Banh T L, Tran X T, Thi H M N. Surface Modification Process by Electrical Discharge Machining with Tungsten Carbide Powder Mixing in Kerosene Fluid. Applied Mechanics and Materials 2019; 889: 115–122.
  • [14] Kumar V, Kumar A, Kumar S, Singh N K. Comparative study of powder mixed EDM and conventional EDM using response surface methodology. In Mater. Today:. Proc. 2018; 5:18089-18094.
  • [15] Shard A, Shikha D, Gupta V, Garg M P. Effect of B4C abrasive mixed into dielectric fluid on electrical discharge machining. J. Braz. Soc. Mech. Sci. Eng. 2018; 40(12): 554.
  • [16] Kolli M, Kumar A. Assessing the Influence of Surfactant and B4C Powder Mixed in Dielectric Fluid on EDM of Titanium Alloy. Silicon 2019; 11(4): 1731–1743.
  • [17] Toshimutsu R, Okada A, Kitada R, Okamoto Y. Improvement in Surface Characteristics by EDM with Chromium Powder Mixed Fluid. Procedia CIRP 2016; 42: 231-235.
  • [18] Nguyen T D, Nguyen P H, Banh L T. Die steel surface layer quality improvement in titanium μ-powder mixed die sinking electrical discharge machining. Int. J. Adv. Manuf. Technol. 2019; 100(9–12): 2637–2651.
  • [19] Unses E, Cogun C. Improvement of Electric Discharge Machining (EDM) Performance of Ti-6Al-4V Alloy with Added Graphite Powder to Dielectric. Strojniški vestnik – Journal of Mechanical Engineering 2015; 61(6): 409–418.
  • [20] Çaydaş U, Ti6Al4V Alaşımının Elektro Erozyon Ve Elektro Kimyasal İşleme Yöntemleriyle İşlenebilirliğinin Araştırılması. Doktora tezi, Fırat Üniversitesi, Elazığ, 2008.
  • [21] Yan B H, Wang C C, Chow H M, Lin Y C. Feasibility study of rotary electrical discharge machining with ball burnishing for Al2O3/6061Al composite. Int. J. Mach. Tools Manuf. 2000; 40(10): 1403–1421.
  • [22] Hasçalik A, Çaydaş U. Electrical discharge machining of titanium alloy (Ti-6Al-4V). Appl. Surf. Sci. 2007; 253(22): 9007–9016.
  • [23] Wang C C, Chow H M, Yang L D, Lu C Te. Recast layer removal after electrical discharge machining via Taguchi analysis: A feasibility study. J. Mater. Process. Technol. 2009; 209(8): 4134–4140.
  • [24] Kang J. Development of high-speed internal finishing and cleaning of flexible capillary tubes by magnetic abrasive finishing. Doctoral thesis, Universtiy of Florida, Florida, 2012.
  • [25] Kang J, George A, Yamaguchi H. High-speed internal finishing of capillary tubes by magnetic abrasive finishing. In Procedia CIRP 2012; 1: 414-418.
  • [26] Wang Y, Shih A, Nteziyaremye V, Li W, Yamaguchi H. Surface Finishing of Needles for High-performance Biopsy. Procedia CIRP 2014; 14: 48–53.
  • [27] Li W, Li X, Yang S, Li W. A newly developed media for magnetic abrasive finishing process: Material removal behavior and finishing performance. J. Mater. Process. Technol. 2018; 260: 20–29.
  • [28] Kajal S, Jain V K, Ramkumar J, Nagdeve L. Experimental and theoretical investigations into internal magnetic abrasive finishing of a revolver barrel. Int. J. Adv. Manuf. Technol. 2018; 100(5–8): 1105–1122.
  • [29] Yamaguchi H, Shinmura T. Internal finishing process for alumina ceramic components by a magnetic field assisted finishing process. Precis. Eng. 2004; 28(2): 135–142.
  • [30] Mulik R S, Pandey P M. Magnetic abrasive finishing of hardened AISI 52100 steel. Int. J. Adv. Manuf. Technol. 2011; 55(5–8): 501–515.
  • [31] Wu J Z, Zou Y H. Study on an ultra-precision plane magnetic abrasive finishing process by use of alternating magnetic field. Applied Mechanics and Materials 2013; 395-396: 985-989
  • [32] Jiao A Y, Quan H J, Li Z Z, Zou Y H. Study on improving the trajectory to elevate the surface quality of plane magnetic abrasive finishing. Int. J. Adv. Manuf. Technol. 2015; 80(9–12): 1613–1623.
  • [33] Kanish T C, Narayanan S, Kuppan P, Denis A S. Investigations on wear behavior of Magnetic Field Assisted Abrasive Finished SS316L material. Mater. Today:. Proc. 2018; 5: 12734-12743.
  • [34] Lin C T, Yang L D, Chow H M. Study of magnetic abrasive finishing in free-form surface operations using the Taguchi method. Int. J. Adv. Manuf. Technol. 2007; 34(1–2): 122–130.
  • [35] Vahdati M, Rasouli S A. Evaluation of Parameters Affecting Magnetic Abrasive Finishing on Concave Freeform Surface of Al Alloy via RSM Method. Adv. Mater. Sci. Eng. 2016; 2016: 1-14.
  • [36] Yin S, Shinmura T. Vertical vibration-assisted magnetic abrasive finishing and deburring for magnesium alloy. Int. J. Mach. Tools Manuf. 2004; 44(12–13): 1297–1303.
  • [37] Mulik R S, Pandey P M. Ultrasonic assisted magnetic abrasive finishing of hardened AISI 52100 steel using unbonded SiC abrasives. Int. J. Refract. Met. Hard Mater 2011; 29(1): 68–77.
  • [38] Misra A, Pandey P M, Dixit U S. Modeling and simulation of surface roughness in ultrasonic assisted magnetic abrasive finishing process. Int. J. Mech. Sci. 2017; 133: 344–356.
  • [39] Misra A, Pandey, P M, Dixit, U. S. Modeling of material removal in ultrasonic assisted magnetic abrasive finishing process. Int. J. Mech. Sci. 2017; 131–132: 853–867.
  • [40] Liu G Y, Guo Z N, Jiang S Z, Qu N S, Li Y. B. A study of processing Al 6061 with electrochemical magnetic abrasive finishing. Procedia CIRP 2014; 14: 234-238.
  • [41] Sihag N, Kala P, Pandey P M. Chemo assisted magnetic abrasive finishing: Experimental investigations. Procedia CIRP 2015: 26; 539-543.
  • [42] Pandey K, Pandey P M. Use of chemical oxidizers with alumina slurry in Double Disk Magnetic Abrasive Finishing for improving surface finish of Si (100). J. Manuf. Processes 2018; 32; 38–150.
  • [43] Singh G, Kumar H, Kansal H K, Srivastava A. Effects of chemically assisted magnetic abrasive finishing process parameters on material removal of inconel 625 tubes. Procedia Manufacturing 2020; 48: 466-473.