Şeker Pancarı Melası Kullanılarak Gluconacetobacter xylinum NRRL B-759 ile Bakteriyel Selüloz Üretimi Üzerine Etanolün Etkisi

Selüloz dünyada en yaygın bulunan makromoleküler yapılardan biridir ve genellikle bitkilerden elde edilir. Kâğıt kullanımının artması ve tıp alanındaki bazı gelişmelerden dolayı günümüzde araştırmacılar alternatif selüloz üretme yöntemlerine odaklanmışlardır. Bakteriyel selüloz formül olarak bitkisel selüloz ile aynı olmasına rağmen su tutma kapasitesi, polimerizasyon derecesi ve yüksek saflık gibi bazı özellikler bakımından bitkisel selülozdan farklıdır. Bu çalışmada, besi yeri ve karbon kaynağı olarak şeker pancarı melası kullanılarak Gluconacetobacter  xylinus NRRL B-759 tarafından bakteriyel selüloz üretimi incelenmiştir. Bu amaçla, bakteriyel selüloz üretiminde melas konsantrasyonunun etkisi (40-240 g/L) ve besi yerine etanol ilavesinin etkisi (5-20 g/L) araştırılmıştır. Sonuç olarak melas konsantrasyonunun artmasıyla 200 g/L konsantrasyona kadar bakteriyel selüloz üretiminin arttığı ve daha sonra azaldığı görülmüştür. Etanol ilavesinin yapıldığı çalışmalarda etanollü besi yerinde üretilen bakteriyel selüloz miktarının etanolsüz ortama göre en çok 10 g/L etanol ilavesinde arttığı görülmüştür.     

___

  • 1. Czaja, W., Romanovicz, D. and Brown, R. M. (2004). Structural Investigations of Microbial Cellulose produced in Stationary and Agitated Culture, Cellulose, 11.
  • 2. Dazzo, F. B., Napoli, C., Dazzo, F., & Hubbell, D. (1975). Production of cellulose microfibrils in Rhizobium Production of Cellulose Microfibrils by Rhizobium1, (September 2016).
  • 3. Gupta, B. S. H. S. G. (2010). Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten apple, 1823–1828. doi:10.1007/s11274-010-0363-1
  • 4. Phisalaphong, M., & Jatupaiboon, N. (2008). Biosynthesis and characterization of bacteria cellulose – chitosan film, 74, 482–488. doi:10.1016/j.carbpol.2008.04.004
  • 5. Chawla, P. R., Bajaj, I. B., Survase, S. A., & Singhal, R. S. (2009). Microbial Cellulose : Fermentative Production and Applications, 47(2), 107–124.
  • 6. Paximada, P., Tsouko, E., Kopsahelis, N., Koutinas, A. A., & Mandala, I. (2016). Food Hydrocolloids Bacterial cellulose as stabilizer of o / w emulsions. Food hydrocolloids, 53, 225–232. doi:10.1016/j.foodhyd.2014.12.003
  • 7. Kurosumi, A., Sasaki, C., Yamashita, Y., & Nakamura, Y. (2009). Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate Polymers, 76(2), 333–335. doi:10.1016/j.carbpol.2008.11.009
  • 8. Zeng, X., Small, D. P., & Wan, W. (2011). Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydrate Polymers, 85(3), 506–513. doi:10.1016/j.carbpol.2011.02.034
  • 9. Chen, L. (2012). Biotransformation of wheat straw to bacterial cellulose and its mechanism, (October). doi:10.1016/j.biortech.2012.10.029
  • 10. Guo, X., Cavka, A., Jönsson, L. J., & Hong, F. (2013). Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production, 1–14.
  • 11. Li, Z., Wang, L., Hua, J., Jia, S., Zhang, J., & Liu, H. (2015). Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydrate Polymers, 120, 115–119. doi:10.1016/j.carbpol.2014.11.061
  • 12. Shoda, S. O. B. M. (2005). Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor, 45–51. doi:10.1007/s00253-004-1723-2
  • 13. Mohammadkazemi, F., Azin, M., & Ashori, A. (2015). Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers, 117, 518–523. doi:10.1016/j.carbpol.2014.10.008 14. Esa, F., Tasirin, S. M., & Rahman, N. A. (2014). Overview of Bacterial Cellulose Production and Application. Italian Oral Surgery, 2, 113–119. doi:10.1016/j.aaspro.2014.11.017
  • 15. Krystynowicz, A., Czaja, W., Jezierska, A. W.-, Gonc, M., Mis´kiewicz, A.-, Turkiewicz, M., & Bielecki, S. (2002). Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology & Biotechnology, 29(July), 189–195. doi:10.1038/sj.jim.7000303
  • 16. Budhiono, A., Rosidi, B., Taher, H., & Iguchi, M. (1999). Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydrate Polymers, 40(2), 137–143. doi:10.1016/S0144-8617(99)00050-8
  • 17. Watanabe, K., & Yamanaka, S. (1995). Effects of Oxygen Tension in the Gaseous Phase on Production and Physical Properties of Bacterial Cellulose Formed under Static Culture Conditions. Bioscience, Biotechnology, and Biochemistry, 59(1), 65–68. doi:10.1271/bbb.59.65
  • 18. Naritomi, T., Kouda, T., Yano, H., & Yoshinaga, F. (1998). Effect of ethanol on bacterial cellulose production from fructose in continuous culture. Journal of Fermentation and Bioengineering, 85(6), 598–603. doi:10.1016/S0922-338X(98)80012-3
  • 19. Maréchal, Y., & Chanzy, H. (2000). The hydrogen bond network in I(β) cellulose as observed by infrared spectrometry. Journal of Molecular Structure, 523(1-3), 183–196. doi:10.1016/S0022-2860(99)00389-0
  • 20. Nelson, M.L., O’Connor, R. T. (1964). Bands, Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Lattice Type. Part 1. Spectra of Lattice Types I, II; III and Of Amorphous Cellulose. 8, (Journal of Applied Polymer Science), 1311–1324.
  • 21. Park, J.K., Park, Y.H., Jung, J. Y. (2003). Production of Bacterial Cellulose by Gluconacetobacter hansenii PJK Isolated From Rotten Apple, (Biotechnol. Bioproc), 83–88.