PLD Yöntemiyle Kaplanmış Bakır Oksit İçerikli Hidroksiapatit İnce Filmin Aşınma ve Korozyon Davranışı

Canlı kemik ve implant arasındaki doğrudan bağ oluşumu olarak tanımlanan osseointegrasyonu iyileştirme ve malzeme üzerinde bakteri oluşumunu azaltma üzerine yapılan araştırmalar bilim dünyasının en güncel çalışmalardandır. Osseointagrasyonu artırmada en çok kullanılan yöntemlerden biri hidroksiapaptit kaplamalarken, bakteri oluşumunu azaltmada kullanılan yöntemler çeşitlilik göstermektedir. Bu yöntemlerden biri de antibakteriyel olduğu bilinen bakır oksitin hidroksiapatit içerisine gömüldüğü kaplamalardır. Bu çalışmada, 316L paslanmaz çelik yüzey üzerine pulsed laser deposition (PLD) işlemi uygulanarak yüzeyde bakır içerikli hidroksiapatit ince film tabakası (HA/CuO) oluşturulmuştur. Kaplama işlemi sonrası işlemsiz ve kaplanmış numunelerin PBS (phosphate buffer saline) ve SBF (yapay vücut sıvısı) içerisinde korozyon davranışları ve kuru ortam aşınma davranışları karşılaştırılmıştır. Yapısal karakterizasyonları SEM, XRD ve 3D profilometre kullanılarak gerçekleştirilmiştir.
Anahtar Kelimeler:

PLD, 316L, Hidroksiapatit, CuO, Korozyon

Wear and Corrosion Behaviour of Copper Oxide Doped Hydroxyapatite Thin Film Layer Coated By PLD

Researches on improving osseointegration which is defined as a direct bond formation between living bone and implant and reducing bacterial growth on the material, are still among the studies that engage scientists’ attention. While hydroxyapatite coating is one of the most widely used approaches to increase osseointegration, methods used to reduce bacterial growth vary. One of these methods is to form a copper-doped hydroxyapatite layer on the implant, which is known to be antibacterial. In this study, a copper oxide-containing hydroxyapatite thin film layer (HA/CuO) was formed on the surface of 316L stainless steel by using pulsed laser deposition (PLD). Dry sliding wear behaviour and corrosion behaviour of untreated and coated samples were comparatively investigated in PBS (phosphate buffer saline) and SBF (simulated body fluid) after coating. Structural characterizations were examined with SEM and XRD.

___

  • Mina A, Castaño A, Caicedo J, Caicedo H, Aguilar Y. Determination of physical properties for β-TCP+ chitosan biomaterial obtained on metallic 316L substrates. Materials Chemistry and Physics 2015; 160: 296-307.
  • Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials Science: An Introduction to Materials in Medicine. 3rd ed. Oxford, UK: Academic Press, 2013.
  • Jung H-D, Jang T-S, Wang L, Kim H-E, Koh Y-H, Song J. Novel strategy for mechanically tunable and bioactive metal implants. Biomaterials 2015; 37: 49-61.
  • Pecheva E, Pramatarova L, Fingarova D, Hikov T, Dineva I, Karagyozova Z, et al. Advanced materials for metal implant coatings. J Optoelectron Adv Mater 2009; 11(9): 1323-6.
  • Yuan Y, Jin S, Qi X, Chen X, Zhang W, Yang K, et al. Osteogenesis stimulation by copper-containing 316L stainless steel via activation of akt cell signaling pathway and Runx2 upregulation. Journal of Materials Science & Technology 2019; 35(11): 2727-33.
  • Chen Q, Thouas G. Biomaterials: A Basic Introduction. Boca Raton, FL, USA: CRC Press, 2014.
  • Katta PP, Nalliyan R. Corrosion resistance with self-healing behavior and biocompatibility of Ce incorporated niobium oxide coated 316L SS for orthopedic applications. Surface and Coatings Technology 2019; 375: 715-26.
  • Liu F, Wang F, Shimizu T, Igarashi K, Zhao L. Hydroxyapatite formation on oxide films containing Ca and P by hydrothermal treatment. Ceram Int 2006; 32(5): 527-31.
  • Garcia-Sanz F, Mayor M, Arias J, Pou J, Leon B, Perez-Amor M. Hydroxyapatite coatings: a comparative study between plasma-spray and pulsed laser deposition techniques. Journal of Materials Science: Materials in Medicine 1997; 8(12): 861-5.
  • Wang DG, Chen CZ, Yang XX, Ming XC, Zhang WL. Effect of bioglass addition on the properties of HA/BG composite films fabricated by pulsed laser deposition. Ceram Int 2018; 44(12): 14528-33.
  • Ke D, Vu AA, Bandyopadhyay A, Bose S. Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants. Acta Biomaterialia 2019; 84: 414-23.
  • Liu X, He D, Zhou Z, Wang G, Wang Z, Guo X. Effect of post-heat treatment on the microstructure of micro-plasma sprayed hydroxyapatite coatings. Surface and Coatings Technology 2019; 367: 225-30.
  • Rodríguez JP, Ríos S, González M. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. Journal of Cellular Biochemistry 2002; 85(1): 92-100.
  • Yuan YH, Jin SJ, Qi X, Chen XD, Zhang W, Yang K, et al. Osteogenesis stimulation by copper-containing 316L stainless steel via activation of akt cell signaling pathway and Runx2 upregulation. Journal of Materials Science & Technology 2019; 35(11): 2727-33.
  • Gerard C, Bordeleau LJ, Barralet J, Doillon CJ. The stimulation of angiogenesis and collagen deposition by copper. Biomaterials 2010; 31(5): 824-31.
  • Zhang D, Ren L, Zhang Y, Xue N, Yang K, Zhong M. Antibacterial activity against Porphyromonas gingivalis and biological characteristics of antibacterial stainless steel. Colloid Surface B 2013; 105: 51-7.
  • Chai HW, Guo L, Wang XT, Fu YP, Guan JL, Tan LL, et al. Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo. J Mater Sci-Mater M 2011; 22(11): 2525-35.
  • Noyce JO, Michels H, Keevil CW. Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. J Hosp Infect 2006; 63(3): 289-97.
  • Wilks SA, Michels H, Keevil CW. The survival of Escherichia coli O157 on a range of metal surfaces. Int J Food Microbiol 2005; 105(3): 445-54.
  • Faundez G, Troncoso M, Navarrete P, Figueroa G. Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. Bmc Microbiol 2004; 4.
  • Mehtar S, Wiid I, Todorov SD. The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study. J Hosp Infect 2008; 68(1): 45-51.
  • Ren L, Wong HM, Yan CH, Yeung KW, Yang K. Osteogenic ability of Cu-bearing stainless steel. Journal of biomedical materials research Part B, Applied biomaterials 2015; 103(7): 1433-44.
  • Hidalgo-Robatto BM, Lopez-Alvarez M, Azevedo AS, Dorado J, Serra J, Azevedo NF, et al. Pulsed laser deposition of copper and zinc doped hydroxyapatite coatings for biomedical applications. Surf Coat Tech 2018; 333: 168-77.
  • Ekmekçi S, Yurtcan MT. Darbeli Lazer Biriktirme (PLD) ile Ti-6Al-4V Üzerine Hidroksiapatitin (HAp) İnce Filmlerinin Hazırlanması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 2020; 9(1): 598-605.
  • Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006; 27(15): 2907-15.
  • Rajih A, Mohammed N, Rasheed F, Samirasheed F. Wear resistance of pulsed laser deposition of hydroxyapatite on Stainless Steel 316L. Advances in Natural and Applied Sciences 2017; 11: 28-38.
  • Sridhar TM, Mudali UK, Subbaiyan M. Preparation and characterisation of electrophoretically deposited hydroxyapatite coatings on type 316L stainless steel. Corros Sci 2003; 45(2): 237-52.
  • Thanh DTM, Nam PT, Phuong NT, Que LX, Anh NV, Hoang T, et al. Controlling the electrodeposition, morphology and structure of hydroxyapatite coating on 316L stainless steel. Mat Sci Eng C-Mater 2013; 33(4): 2037-45.
  • Zhu D, Wang L, Yu W, Xie H. Intriguingly high thermal conductivity increment for CuO nanowires contained nanofluids with low viscosity. Scientific Reports 2018; 8(1): 5282.
  • Mevada C, Sengupta B. Effect of Temperature and Precursor Concentration on Morphology of Copper Oxide Synthesized on Glass Substrates Via Hydrothermal Method. 2017; 3: 6-11.
  • Liu YD, Sun J, Pei ZL, Li W, Liu JH, Gong J, et al. Oxidation and hot corrosion behavior of NiCrAlYSi plus NiAl/cBN abrasive coating. Corros Sci 2020; 167.
  • Mengesha GA, Chu JP, Lou BS, Lee JW. Corrosion performance of plasma electrolytic oxidation grown oxide coating on pure aluminum: effect of borax concentration. J Mater Res Technol 2020; 9(4): 8766-79.
  • Liang M-j, Wu C, Ma Y, Wang J, Dong M, Dong B, et al. Influences of aggressive ions in human plasma on the corrosion behavior of AZ80 magnesium alloy. Materials Science and Engineering: C 2020: 111521.
  • Hu P, Song R, Li XJ, Deng J, Chen ZY, Li QW, et al. Influence of concentrations of chloride ions on electrochemical corrosion behavior of titanium-zirconium-molybdenum alloy. J Alloy Compd 2017; 708: 367-72.
  • Huang YB, Yang SL, Gu JX, Xiong Q, Duan CF, Meng X, et al. Microstructure and wear properties of selective laser melting 316L. Materials Chemistry and Physics 2020; 254.
  • Upadhyay RK, Kumar A. Scratch and wear resistance of additive manufactured 316L stainless steel sample fabricated by laser powder bed fusion technique. Wear 2020; 458.
  • Kovaci H. Comparison of the microstructural, mechanical and wear properties of plasma oxidized Cp-Ti prepared by laser powder bed fusion additive manufacturing and forging processes. Surface & Coatings Technology 2019; 374: 987-96.
  • Czupryk W, Grzeszczak A, Pisarek M. Study of CuO admixtures as antiwear additive in Machine Grease – 2. Tribology - Materials, Surfaces & Interfaces 2014; 8(3): 154-8.
  • Jatti VS, Singh TP. Copper oxide nano-particles as friction-reduction and anti-wear additives in lubricating oil. J Mech Sci Technol 2015; 29(2): 793-8.
  • Kovaci H, Akaltun Y, Yetim AF, Uzun Y, Celik A. Investigation of the usage possibility of CuO and CuS thin films produced by successive ionic layer adsorption and reaction (SILAR) as solid lubricant. Surf Coat Tech 2018; 344: 522-7.
  • Peruzzo M, Serafini FL, Ordonez MFC, Souza RM, Farias MCM. Reciprocating sliding wear of the sintered 316L stainless steel with boron additions. Wear 2019; 422: 108-18.
  • Kazerooni NA, Bahrololoom ME, Shariat MH, Mahzoon F, Jozaghi T. Effect of Ringer's Solution on Wear and Friction of Stainless Steel 316L after Plasma Electrolytic Nitrocarburising at Low Voltages. Journal of Materials Science & Technology 2011; 27(10): 906-12.
  • Farias MCM, Souza RM, Sinatora A, Tanaka DK. The influence of applied load, sliding velocity and martensitic transformation on the unlubricated sliding wear of austenitic stainless steels. Wear 2007; 263: 773-81.
  • Li GJ, Peng Q, Li C, Wang Y, Gao J, Chen SY, et al. Effect of DC plasma nitriding temperature on microstructure and dry-sliding wear properties of 316L stainless steel. Surf Coat Tech 2008; 202(12): 2749-54.
  • Voevodin AAZ, J.S.; Jones, J.G. Pulsed Laser Deposition of Tribological Coatings. In: Eason R, editor. Pulsed Laser Deposition of Thin Films. New Jersey, USA: John Wiley & Sons, Inc., 2006. pp. 585-609.