Çapraz Bağlı Kitosan/Selüloz/Grafen Kompozitinin Şişme Davranışlarının İncelenmesi

Kitosan/selüloz biyopolimer matrisi grafen ile katkılandıktan sonra basit ve pratik bir yolla çapraz bağlı üçlü absorban kompozit sistemi üretildi. Kitosan iyi film özelliği gösteren, birçok fonksiyonel gruba ve geniş kullanım alanına sahip, yeryüzünde selülozdan sonra en çok bulunan ikinci biyopolimer malzemedir. Kitosanın düşük mekanik özelliklerini arttırmak ve kırılgan yapısını elimine ederek daha esnek bir yapı elde etmek için selüloz ile karıştırıldı. Bu biyopolimer karışım, üretilecek malzemeye iletkenlik kazandırmak ve geniş kullanım alanına sahip bir malzeme üretebilmek için grafen ile katkılandı. Bu kapsamda üç farklı oranda çapraz bağlayıcı kullanılarak hazırlanan kompozitlerin sıvı absorplama özelliklerine pH’ın ve çapraz bağlayıcı miktarının etkisini araştırmak amacıyla şişme testleri yapıldı. Çapraz bağlayıcı olarak glutaraldehit kullanıldı. Artan çapraz bağlayıcı miktarı ve pH ile birlikte şişme ve absorplanan sıvı oranının azaldığı gözlendi. Hazırlanan kompozitlerin mekanik özellikleri çekme testleri ile araştırıldı ve çapraz bağlayıcı miktarı kompozitin çekme dayanımını arttırırken bu artışın çapraz bağlayıcı miktarı ile orantılı olmadığı tespit edildi. Hazırlanan kompozitin yapısal ve moleküler özellikleri FT-IR ve FESEM analizleri ile tespit edildi. Bu analizlerin sonucunda üç bileşenin birbiri içerisinde iyi bir biçimde dağıldığı, bu bileşenler arasında molekül içi ve moleküller arası bağlar ve sinerjik etki sebebiyle güçlü bir etkileşimin olduğu bunun sonucunda da kompozitin yeniden yapılandığı gösterildi.

Investigation of Swelling Behavior of Cross-Linked Chitosan / Cellulose / Graphene Composite

The chitosan / cellulose biopolymer matrix was filled with graphene and a cross-linked ternary absorbent composite system was produced in an easy and practical way. Chitosan is the second most abundant biopolymer material after cellulose, with many functional groups and wide usage areas, showing good film properties. Chitosan with having many functional groups and wide usage areas, showing good film properties is the second most abundant biopolymer material after cellulose. The chitosan/cellulose blend was prepared in order to change the brittle structure of chitosan and to obtain the more flexible material network. Biopolymer blend was filled with graphene to increase the mechanical strength of produced composite material and to produce a conductive and widely used material. In this context, the effect of pH and the amount of crosslinker on the liquid absorption properties of composites prepared with three different amount of crosslinker was investigated by swelling tests. Glutaraldehyde was used as the crosslinker. It was observed that swelling and absorbed liquid ratio decreased with increasing amount of crosslinker and pH. The mechanical properties of the prepared composites were investigated by tensile tests and it was determined the increasing amount of crosslinker increases the tensile strength of the composite and this increase is not proportional to the amount of crosslinker. The structural and molecular properties of the prepared composite were determined by FT-IR and FESEM analysis. As a result of these analyzes, it has been shown the three components were well dispersed in this composite system. Besides them, it was figure out a strong interaction between these components due to the intramolecular and intermolecular bonds and synergistic effect.

___

  • [1] M.N. Alam, L.P. Christopher, Natural Cellulose-Chitosan Cross-Linked Superabsorbent Hydrogels with Superior Swelling Properties, ACS Sustainable Chemistry and Engineering. 6 (2018) 8736–8742. https://doi.org/10.1021/acssuschemeng.8b01062.
  • [2] M. Etty, S.D. Auria, S. Shankar, S. Salmieri, J. Coutu, New immobilization method of anti-PepD monoclonal antibodies for the detection of Listeria monocytogenes p60 protein – Part A : Optimization of a crosslinked film support based on chitosan and cellulose nanocrystals ( CNC ), Reactive and Functional Polymers. 146 (2020) 104313. https://doi.org/10.1016/j.reactfunctpolym.2019.06.021.
  • [3] S. Omidi, M. Pirhayati, A. Kakanejadifard, Co-delivery of doxorubicin and curcumin by a pH-sensitive , injectable, and in situ hydrogel composed of chitosan , graphene , and cellulose nanowhisker, Carbohydrate Polymers. 231 (2020) 115745. https://doi.org/10.1016/j.carbpol.2019.115745.
  • [4] E.A. Hassan, M.L. Hassan, R.E. Abou-zeid, N.A. El-wakil, Novel nanofibrillated cellulose / chitosan nanoparticles nanocomposites films and their use for paper coating, Industrial Crops & Products. 93 (2016) 219–226. https://doi.org/10.1016/j.indcrop.2015.12.006.
  • [5] M.F. Mohamed, X. Zhou, H.S. Ibrahim, N.S. Ammar, H.A. Essawy, International Journal of Biological Macromolecules Grafting polymerization of acrylic acid onto chitosan-cellulose hybrid and application of the graft as highly ef fi cient ligand for elimination of water hardness : Validation of high selectivity in prese, International Journal of Biological Macromolecules. 116 (2018) 530–536. https://doi.org/10.1016/j.ijbiomac.2018.05.062.
  • [6] X. Fan, Y. Li, X. Li, Y. Wu, K. Tang, J. Liu, X. Zheng, Injectable antibacterial cellulose nanofiber / chitosan aerogel with rapid shape recovery for noncompressible hemorrhage, International Journal of Biological Macromolecules. (2019). https://doi.org/10.1016/j.ijbiomac.2019.10.273.
  • [7] N. Reddy, R. Reddy, Q. Jiang, Crosslinking biopolymers for biomedical applications, Trends in Biotechnology. 33 (2015) 362–369. https://doi.org/10.1016/j.tibtech.2015.03.008.
  • [8] O. Yigit, B. Dikici, T.C. Senocak, N. Ozdemir, One-step synthesis of nano-hydroxyapatite/graphene nanosheet hybrid coatings on Ti6Al4V alloys by hydrothermal method and their in-vitro corrosion responses, Surface and Coatings Technology. 394 (2020) 125858. https://doi.org/10.1016/j.surfcoat.2020.125858.
  • [9] S. Bodur, S. Erarpat, S. Bakırdere, Fe3O4/reduced graphene oxide nanocomposites based dispersive solid phase microextraction for trace determination of profenofos in white rice flour samples, Journal of Food Composition and Analysis. 91 (2020). https://doi.org/10.1016/j.jfca.2020.103516.
  • [10] A.L. Harkins, S. Duri, L.C. Kloth, C.D. Tran, Chitosan-cellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood absorption ability, and biocompatibility, Journal of Biomedical Materials Research - Part B Applied Biomaterials. 102 (2014) 1199–1206. https://doi.org/10.1002/jbm.b.33103.
  • [11] C. Demitri, V.M. De Benedictis, M. Madaghiele, C.E. Corcione, A. Maffezzoli, Nanostructured active chitosan-based films for food packaging applications: Effect of graphene stacks on mechanical properties, Measurement. 90 (2016) 418–423. https://doi.org/https://doi.org/10.1016/j.measurement.2016.05.012.
  • [12] G. Jena, B. Anandkumar, S.C. Vanithakumari, R.P. George, J. Philip, G. Amarendra, Graphene oxide-chitosan-silver composite coating on Cu-Ni alloy with enhanced anticorrosive and antibacterial properties suitable for marine applications, Progress in Organic Coatings. 139 (2020) 105444. https://doi.org/10.1016/j.porgcoat.2019.105444.
  • [13] Y.E. Aguirre-Chagala, L.B. Pavón-Pérez, V. Altuzar, J.G. Domínguez-Chávez, S. Muñoz-Aguirre, C. Mendoza- Barrera, Comparative Study of One-Step Cross-Linked Electrospun Chitosan-Based Membranes, Journal of Nanomaterials. 2017 (2017) 1980714. https://doi.org/10.1155/2017/1980714.
  • [14] Z. Zhong, J. Qin, J. Ma, Cellulose acetate/hydroxyapatite/chitosan coatings for improved corrosion resistance and bioactivity, Materials Science and Engineering: C. 49 (2015) 251–255. https://doi.org/https://doi.org/10.1016/j.msec.2015.01.020.
  • [15] N. Latifi, M. Asgari, H. Vali, L. Mongeau, A tissue-mimetic nano-fibrillar hybrid injectable hydrogel for potential soft tissue engineering applications, Scientific Reports. 8 (2018) 1–18. https://doi.org/10.1038/s41598-017-18523-3.
  • [16] M. Alavi, A. Nokhodchi, An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers, Carbohydrate Polymers. 227 (2020) 115349. https://doi.org/10.1016/j.carbpol.2019.115349.
  • [17] L. Zhao, S. Yang, A. Yilihamu, Q. Ma, M. Shi, B. Ouyang, Q. Zhang, X. Guan, S.T. Yang, Adsorptive decontamination of Cu2+-contaminated water and soil by carboxylated graphene oxide/chitosan/cellulose composite beads, Environmental Research. 179 (2019) 108779. https://doi.org/10.1016/j.envres.2019.108779.
  • [18] Shahid-ul-Islam, B.S. Butola, A. Kumar, Green chemistry based in-situ synthesis of silver nanoparticles for multifunctional finishing of chitosan polysaccharide modified cellulosic textile substrate, International Journal of Biological Macromolecules. 152 (2020) 1135–1145. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.10.202.
  • [19] R. Ayranci, G. Başkaya, M. Güzel, S. Bozkurt, F. Şen, M. Ak, Carbon Based Nanomaterials for High Performance Optoelectrochemical Systems, ChemistrySelect. 2 (2017) 1548–1555. https://doi.org/10.1002/slct.201601632.
  • [20] J. Phiri, P. Gane, T.C. Maloney, General overview of graphene: Production, properties and application in polymer composites, Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 215 (2017) 9–28. https://doi.org/10.1016/j.mseb.2016.10.004.
  • [21] H. İncebay, Z. Yazıcıgil, Effect of different copper salts on the electrochemical determination of Cu(II) by the application of the graphene oxide-modified glassy carbon electrode, Surfaces and Interfaces. 9 (2017) 160–166. https://doi.org/10.1016/j.surfin.2017.09.004.
  • [22] B.C. Ozkan, T. Soganci, H. Turhan, M. Ak, Investigation of rGO and chitosan effects on optical and electrical properties of the conductive polymers for advanced applications, Electrochimica Acta. 295 (2019) 1044–1051. https://doi.org/10.1016/j.electacta.2018.11.032.
  • [23] T. Huang, Y.W. Shao, Q. Zhang, Y.F. Deng, Z.X. Liang, F.Z. Guo, P.C. Li, Y. Wang, Chitosan-Cross-Linked Graphene Oxide/Carboxymethyl Cellulose Aerogel Globules with High Structure Stability in Liquid and Extremely High Adsorption Ability, ACS Sustainable Chemistry and Engineering. 7 (2019) 8775–8788. https://doi.org/10.1021/acssuschemeng.9b00691.
  • [24] E.A. El-Hefian, M.M. Nasef, A.H. Yahaya, The preparation and characterization of Chitosan / Poly (Vinyl Alcohol) blended films, E-Journal of Chemistry. 7 (2010) 1212–1219. https://doi.org/10.1155/2010/626235.
  • [25] M. Muthuchamy, R. Govindan, K. Shine, V. Thangasamy, N.S. Alharbi, M. Thillaichidambaram, J.M. Khaled, J.L. Wen, K.F. Alanzi, Anti-biofilm investigation of graphene/chitosan nanocomposites against biofilm producing P. aeruginosa and K. pneumoniae, Carbohydrate Polymers. 230 (2020). https://doi.org/10.1016/j.carbpol.2019.115646.
  • [26] L. Yan, W. Chen, Preparation of chitosan / graphene oxide composite film with enhanced mechanical strength in the wet state, Carbohydrate Polymers. 83 (2011) 653–658. https://doi.org/10.1016/j.carbpol.2010.08.038.
  • [27] C. Rodríguez-González, A.L. Martínez-Hernández, V.M. Castanõ, O. V. Kharissova, R.S. Ruoff, C. Velasco-Santos, Polysaccharide nanocomposites reinforced with graphene oxide and keratin-grafted graphene oxide, Industrial and Engineering Chemistry Research. 51 (2020) 3619–3629. https://doi.org/10.1021/ie200742x.
  • [28] A.R. Karimi, M. Tarighatjoo, G. Nikravesh, 1,3,5-Triazine-2,4,6-tribenzaldehyde derivative as a new crosslinking agent for synthesis of pH-thermo dual responsive chitosan hydrogels and their nanocomposites: Swelling properties and drug release behavior, International Journal of Biological Macromolecules. 105 (2017) 1088–1095. https://doi.org/10.1016/j.ijbiomac.2017.07.128.
  • [29] R. Wang, D. Shou, O. Lv, Y. Kong, L. Deng, J. Shen, pH-Controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and graphene oxide as the carrier, International Journal of Biological Macromolecules. 103 (2017) 248–253. https://doi.org/10.1016/j.ijbiomac.2017.05.064.
  • [30] I.M. Garnica-Palafox, F.M. Sánchez-Arévalo, Influence of natural and synthetic crosslinking reagents on the structural and mechanical properties of chitosan-based hybrid hydrogels, Carbohydrate Polymers. 151 (2016) 1073–1081. https://doi.org/10.1016/j.carbpol.2016.06.036.
  • [31] O. Guaresti, C. García–Astrain, T. Palomares, A. Alonso–Varona, A. Eceiza, N. Gabilondo, Synthesis and characterization of a biocompatible chitosan–based hydrogel cross–linked via ‘click’ chemistry for controlled drug release, International Journal of Biological Macromolecules. 102 (2017) 1–9. https://doi.org/10.1016/j.ijbiomac.2017.04.003.
  • [32] T.H. Mokhothu, M.J. John, Review on hygroscopic aging of cellulose fibres and their biocomposites, Carbohydrate Polymers. 131 (2015) 337–354. https://doi.org/10.1016/j.carbpol.2015.06.027.