Free vibration analysis of beams and plates by the method of harmonic differential quadrature (HDQ) by the method of harmonic differential quadrature (HDQ)
Kiriş ve plakların dinamik analizi için harmonik tip diferansiyel kuadrature yöntemi geliştirilmiştir. Farklı sınır koşullarına sahip dikdörtgen, dairesel ve kare plak metodun doğruluğunu göstermek için seçilmiştir. Kiriş için hem eksenel hem de eğilmeli titreşim durumu dikkate alınmıştır. Uygulamalarda kiriş ve plak için ilk üç frekans elde edilmiştir.
Kiriş ve plakların harmonik diferansiyel kuadrature (HDQ) yöntemi ile serbest titreşim analizi
A harmonic type differential quadrature (HDQ) method is developed for the dynamic analysis of beams and thin plates. Plates of different shapes such as rectangular and circular plates subjected to different boundary conditions are selected to demonstrate the accuracy of the method. Both the axial and flexural vibration cases are taken into consideration for beams. First three frequencies are obtained in the applications for beams and plates.
___
- 1. C.W. Bert, S. K. Jang and A.G. Striz, Two new approximate methods for analyzing free vibration of structural components. AIAA Journal, 26 (5), 612-618, 1987.
- 2. Ö. Civalek ve M.Ülker, JHarmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates, Int. Journal of Struc. Eng. Mech., 17 (1), 1-14, 2003.
- 3. R. Bellman, B. G. Kashef and J. Casti, Differential Quadrature: A technique for the rapid solution of nonlinear partial differential equation. J. of Computational Physics, 10, 40-52, 1972.
- 4. C.W. Bert, Z.Wang and A.G Striz, Differential quadrature for static and free vibration analysis of anisotropic plates. Int. Journal of Solids and Struc, 30 (13), 1737-1744, 1993.
- 5. C.W. Bert and M. Malik, Differential quadrature method in computational mechanics: a review. Applied Mechanics Review, 49 (1), 1-28, 1996.
- 6. C. Shu and B.E.Richards, Application of generalized differential quadrature to solve two- dimensional incompressible Navier-Stokes equations. Int. Journal for Num. Meth. in Fluids, 15,791-798, 1992.
- 7. A.G. Striz, X.Wang and C.W.Bert, Harmonic differential quadrature method and applications to analysis of structural components, Acta Mech., 111, 85-94,1995.
- 8. Ö.Civalek ve M.Ülker, Free vibration analysis of elastic beams using harmonic differential quadrature (HDQ), Math, and Comp. App., 2003.
- 9. C. Shu and H. Xue, Explicit computations of weighting coefficients in the harmonic differential quadrature. Journal of Sound and Vibration, 204(3), 549-555, 1997.
- 10. C.W. Bert and M. Malik, The differential quadrature method for irregular domains and application to plate vibration. Int. Journal of Mech. Science, 38(6), 589-606, 1996.
- 11. W. C. Hurty and M.F. Rubinstein, Dynamics of Structures, Englewood Cliffs, NJ Prentice-Hall, 1964.
- 12. H.Du, M.K. Lim and R.M. Lin, Application of generalized differential quadrature method to vibration analysis. Journal of Sound and Vibration, 181(2), 279-293, 1995.
- 13. A. W. Leissa, Vibration Analysis of Plates, NASA, SP-160, 1969.
- 14. R. D. Blevins, Formulas for natural frequency and mode shapes, Malabur-Florida, Robert E. Krieger, 1984.
- 15. C.W. Bert and M. Malik, Free vibration analysis of tapered rectangular plates by differential quadrature method: a semi- analytical approach. J. of Sound and Vibration, 190(1), 41-63, 1996.
- 16. K. J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, NJ, Prentice-Hall, 1982.
- 17. L. Meirovitch, Elements of Vibration Analysis, Singapore, McGraw-Hill, 1986.
- 18. O. C. Zienkiewicz, The Finite Element Method in Engineering Science, 3rd edt. London, McGraw-Hill, 1977.
- 19. S. Timoshenko and W. S. Krieger, Theory of Plates and Shells, New York: 2nd Ed. McGraw-Hill, 1959.
- 20. A. W. Leissa, The free vibration of rectangular plates, J. Sound and Vibration, 31, 257-293, 1973.