Çelik, cam ve polipropilen lifli betonlarda donma-çözülme etkilerinin araştırılması

Bu çalışmada, polipropilen, cam ve çelik lifli betonların dona dayanıklılıkları araştırılmıştır. Deneyler için, lifsiz, polipropilen, cam, çelik ve karışık lifli 12 farklı beton üretilmiştir. Beton karışımında mikro yapılı çapı 50 $mu$, boyut oranı 400 polipropilen ve çapı 14 $mu$, boyut oranı 857 olan cam lifler ile makro yapılı çapı 0.75 mm, boyut oranı 80 olan çelik lifler kullanıldı. %0.5, 0.75 ve %1 hacimsel oranında çelik lifler, beton içinde %0.1 hacimsel oranında polipropilen ve cam liflerle karışık ve ayrı ayrı kullanıldı. Deneyler ASTM C 666 standardından havada hızlı donma-çözülme koşulları dikkate alınarak yapılmıştır. 30 donma-çözülme çevrimi sonucunda hazırlanan numuneler üzerinde ağırlık kaybı, ultrases geçiş hızı ve dayanıklılık faktörü değerleri belirlenmiştir. Deney sonuçları, betonda kullanılan lif tipine göre değerler arasında önemli farklılıklar olduğunu göstermiştir.

The effect of freeze-thaw on the steel, glass, and polypropylen fiber reinforced concrete

Durability of concrete reinforced by fiber, polypropylene, glass and steel against the effects of freeze-thaw was investigated in this study. Plain, polypropylene, glass, steel and hybrid 12 concrete specimens were produced The polypropylene fibers in diameter of 50 $mu$, aspect ratio of 400, glass fibers in diameter of 14 $mu$, aspect ratio of 857 and steel fibers in diameter of 0.75 mm, aspect ratio of 80 were used in concrete mixtures. The volumetric contents were 0.5, 0.75 and 1% in steel fiber reinforced concretes. The volumetric content was 0.1% in polypropylene and glass fiber reinforced concretes. The experiments of rapid freeze-thaw in the air were taken as the basis according to the criteria of ASTM C 666. Values of weight-loss and of the durability factor, which was determined by pulse velocity, in the specimens were evaluated after 30 freeze-thaw cycles. Experiments results were determined to be significantly different from one another according to the type of the fiber used in the concrete.

___

  • [1]. Do, M.T., Chaal O. and Aitcin P.C. (1993) Fatigue Behavior of High-Performance Concrete, ASCE JM. 1, 96–111.
  • [2]. Gao L. and Hsu C.T.T. (1998). Fatigue of Concrete under Uniaxial Compression Cyclic Loading. ACI Mater J, Sept.–Oct.. 575–581.
  • [3]. Hordijk D.A., Wolsink G.M. and Vries J. (1995). Fracture and Fatigue Behaviour of High Strength Limestone Concrete as Compared to Gravel Concrete, HERON. 40(2):125–146.
  • [4]. Hsu T.C., Fatigue of Plain Concrete. (1981). ACI Journal 78, 292–305.
  • [5]. Otter D.E. and Naaman A.E.(1988). Properties of Steel Fiber Reinforced Concrete under Cyclic Loading”. ACI Material Journal. July-Aug. 254–261.
  • [6]. Ramakrishnan V., Meyer C., Naaman A., Zhao G. and Fang L. (1996). Cyclic Behavior, Fatigue Strength, Endurance Limit and Models for Fatigue Behavior of FRC, In: Naaman A, Reinhardt, editors. High performance fiber reinforced cement composites. London: E & FN Spon.
  • [7]. Su E.C.M. and Hsu T.T.C. (1988) Biaxial Compression Fatigue and Discontinuity of Concrete”. ACI Material Journal. May–June. 178–188.
  • [8]. Cachim, P.B., Figueiras, J.A. and Pereira, P.A.A. (2002). Fatigue Behavior of Fiber-Reinforced Concrete in Compression. Cement and Concrete Composites. 24, 211–217.
  • [9]. Singh, S.P. and Kaushik, S.K. (2003). Fatigue Strength of Steel Fibre Reinforced Concrete in Flexure, Cement and Concrete Composites. 25, 779-786.
  • [10]. Ezeldin A.S. and Shiah T.W. (1995). Analytical Immediate and Long-Term Deflections of Fiber-Reinforced Concrete Beams. Journal of Structural Engineering. 121, 727-737.
  • [11]. Ekinci, C.E. (2005). Bordo Kitap: Yapı ve Tasarımcının İnşaat El Kitabı. Üniversite Kitabevi. 1206s. Elazığ.
  • [12]. Wu, H-C. and Li, V.C. (1994). Trade-off Between Strength and Ductility of Random Discontinuous Fiber Reinforced Cementitious Composites. Cement and Concrete Composites. 16, 23-29.
  • [13]. Sun, W., Mu, R., Luo, X. and Miao, C., Effect of Chloride Flat, Freeze–Thaw Cycling and Externally Applied Load on the Performance of the Concrete, Cement and Concrete Research. 32, 1859–1864, 2002.
  • [14]. Mu, R., Miao, C., Luo, X. and Sun, W. (2002). Interaction between Loading, Freeze-Thaw Cycles, and Chloride Salt Attack of Concrete with and without Steel Fiber Reinforcement”. Cement and Concrete Research. 32, 1061-1066.
  • [15]. Mia, C., Mu, R., Tian, Q. and Sun, W. (2002). Effect of Sulphate Solution on the Frost Resistance of Concrete with and without Steel Fiber Reinforcement. Cement and Concrete Research. 32, 31–34.
  • [16]. Sun, W., Zhang, Y.M., Yan, H.D., Mu, R. and Yan, A. (1999). Damage and Its Restraint of Concrete with Different Strength Grades under Double Damage Factors, Cement and Concrete Composites. 21, 439-442.
  • [17]. Sun, W., Zhang, Y.M., Yan, H.D. and Mu, R. (1999). Damage and Damage Resistance of High Strength Concrete under the Action of Load and Freeze-Thaw Cycles. Cement and Concrete Research. 29, 1519-1523.
  • [18]. Türker, T. (2000). Betonarmede Oluşan İç Gerilimlere Karşı Gerçek Önlem. İnşaat ve Malzeme. 150, 24-25.
  • [19]. Morgan, D.R. (1991). Freeze Thaw Durability of Steel and Polypropylene Reinforced Shotcretes: A Review, Durability of Concrete. Second International Conference. Volume 2. 901-918. Montreal. Canada.
  • [20]. Juska, T., Dutta, P., Carlson, L. and Weitsman, J. (1999). Gap Analysis for Durability of Fiber Reinforced Polymer Composites in Civil Infrastructure. Thermal Effects. Chapter 5. 40-51.
  • [21]. Gomez, J. and Casto, B. (1996). Freeze/Thaw Durability of Composite Materials, Proceedings of the 1st International Conference on Composites in Infrastructure. Fiber Composites in Infrastructure. 947-955.
  • [22]. Karbhari, V.M. and Engineer, M. (1996). Investigation of Bond between Concrete and Composites: Use of a Peel Test, J. of Reinforced Plastics and Composites. 15, 208-227.
  • [23]. Myers, J.J., Murthy, S. and Micelli, F. (2001). Effect of Combined Environmental Cycles on the Bond of FRP Sheets to Concrete, Proceedings-Composites In Construction 2001 International Conference. Porto. Portugal.
  • [24]. Yıldız, S. (1998). Lifli Beton Boruların Dayanıklılık, Kırılma Performansı ve Kullanılabilirliğinin Araştırılması, DoktoraTezi. F.Ü. Fen Bilimleri Enstitüsü. Elazığ. s.134. Türkiye.
  • [25]. ASTM C 666-92. (1999). Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing, Volume 04.02. Concrete and Aggregates. American Society for Testing and Materials. West Conshohocken. PA.
  • [26]. Yıldırım, S.T. (2002). Lif Takviyeli Betonların Performans Özelliklerinin Araştırılması, Doktora Tezi. F.Ü. Fen Bilimleri Enstitüsü, Elazığ. s:193. Türkiye.