Al metal matris kompozitlerin abrasiv aşınma performansına takviye elemanlarının etkisi

Bu çalışmada, bir Al-Si-Mg alaşımına ağırlıkça % 5, 10 ve 15 oranlarında SiC, Al2O3 ve FeCrC partikülleri ilave edilerek üretilen Al metal matrisli kompozit malzemelerin (MMK) abrasiv aşınma davranışları incelenmiştir. Kompozit malzemeler karıştırmalı döküm tekniğiyle üretilmiştir. Abrasiv aşınma deneyleri, bir pin on disk test cihazında 1.89 m/s kayma hızında ve 10-30 N yük altında gerçekleştirilmiştir. Ayrıca, üretilen matris alaşımı ve kompozit malzemelerin optik mikroskop, taramalı elektron mikroskobu (SEM) ve EDS çalışmaları yapılmıştır. Test sonuçları incelendiğinde, matris alaşımının aşınma değerinin kompozit malzemelerin aşınma değerlerine göre oldukça yüksek olduğu tespit edilmiştir. Bunun yanı sıra, tüm MMK numunelerinde, artan yükle birlikte aşınma miktarının da arttığı, ancak maksimum yükte FeCrC partiküllerinin matrisi plastik olarak deforme ettiği belirlenmiştir.

Effect of particle reinforcements on abrasive wear performance of aluminum metal matrix composites

In this work, the effect of SiC, Al2O3 and FeCrC particulate reinforcement (5, 10 and 15 w.t. %) on the abrasive wear behaviour of aluminum metal matrix composites (MMCs) have been investigated. The composite materials and Al-Si-Mg matrix alloy have been processed using stir-casting technique. Wear tests have been carried out using a pin-on-disc aparatus at 10-30 N loads and 1.89 m/s sliding speed. Besides, the optical, SEM microscope and EDS studies of both matrix alloy and composite materials have been carried out. According to the test result, it is observed that the wear rate of matrix alloy is higher than the wear rate of the composite materials. However, increasing applied load increased the wear rate in the all MMCs. But, it is observed that FeCrC particles are plastically deformed to the matrix at maximum load.

___

  • 1. Bindumadhavan, P.N., Chia, T.K., Chandrasekaran, M., Wah, H.K., Lam, L.N., Prabhakar, O. (2001). Effect of particle-porosity clusters on tribological behavior of cast aluminum alloy A356-SiCp metal matrix composites. Materials Science and Engineering A315, 217-226.
  • 2. Ceschini, L., Bosi, C., Casagrande, A., Garagnani, G.L. (2001). Effect of thermal treatment and recycling on the tribological behaviour of an AlSiMg/SiCp composite. Wear, 251, 1377-1385.
  • 3. Riahi, A.R., Alpas, A.T. (2001). The role of tribo-layers on the sliding wear behavior of graphitic aluminum matrix composites. Wear, 251, 1396-1407.
  • 4. Jun D., Liu, Y.-H., Yu, S.-R., Li, W.-F. (2004). Dry sliding friction and wear properties of Al2O3 and carbon short fibres reinforced Al-12Si alloy hybrid composites. Wear, 257, 930-940.
  • 5. Sawla, S., Das, S. (2004). Combined effect of reinforcement and heat treatment on the two body abrasive wear of aluminum alloy and aluminum particle composites. Wear, 257, 555-561.
  • 6. Candan, E., Ahlatci, H., Cimenoglu, H. (2001). Abrasive wear behaviour of Al-SiC composites produced by pressure infiltration technique. Wear, 247, 133-138.
  • 7. Shorowordi, K.M., Haseeb, A.S.M.A., Celis, J.P. (2004). Velocity effects on the wear, friction and tribochemistry of aluminum MMC sliding against phenolic brake pad. Wear, 256, 1176-1181.
  • 8. Fu, H.-H., Han, K.-S., Song, J.-I. (2004). Wear properties of Saffil/Al, Saffil/Al2O3/Al and Saffil/SiC/Al hybrid metal matrix composites. Wear, 256, 705-713.
  • 9. Mondal, D.P., Das, S., Jha, A.K., Yegneswaran, A.H. (1998). Abrasive wear of Al alloy-Al2O3 particle composite: a study on the combined effect of load and size of abrasive. Wear, 223, 131-138.
  • 10. R. L. Deuis, C. Subramanian and J. M. Yellup, Abrasive wear of aluminium composites-a review, Wear 201 (1996) 132-144.
  • 11. Acilar, M., Gul, F. (2004). Effect of the applied load, sliding distance and oxidation on the dry sliding wear behaviour of Al-10Si/SiCp composites produced by vacuum infiltration technique. Materials and Design, 25, 209-217.
  • 12. Kok, M. (2005). Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminum alloy composites. Journal of Materials Processing Technology, 161, 381-387.
  • 13. Sahin, Y. (2003). Preparation and some properties of SiC particle reinforced aluminum alloy composites. Materials and Design, 24, 671-679.
  • 14. Mandal, D., Dutta, B.K., Panigrahi, S.C. (2004). Wear and friction behavior of stir cast aluminum-base short steel fiber reinforced composites. Wear, 257, 654-664.
  • 15. Zhang, J., Alpas, A.T. (1993). Wear regimes and transitions in Al2O3 particulate-reinforced aluminum alloys. Materials Science and Engineering A161, 273-284.
  • 16. Dutta, I. (1991). The nature and effect of thermal residual stresses in discontinuous fiber reinforced metal matrix composites. Composites Science and Technology, 41, 193-213.
  • 17. Archard, J.F. (1953). Contact and rubbing of flat surfaces. Journal of Applied Physics, 24, 981-988
  • 18. Hashim, J., Looney, L., Hashmi, M.S.J. (2001). The wettability of SiC particles by molten aluminium alloy. Journal of Materials Processing Technology, 119, 324-328.
  • 19. Daniel, B.S.S., Murthy, V.S.R., Murty, G.S. (1997). Metal-ceramic composites via in-situ methods. Journal of Materials Processing Technology, 68, 132-155.
  • 20. Yang, J.B., Lin, C.B., Wang, T.C., Chu, H.Y. (2004). The tribological characteristics of A356.2Al alloy/Gr(p) composites. Wear, 257, 941-952.
  • 21. Buytoz, S., Yıldırım, M.M., Eren, (2006). H. FeCrC ve FeSiCrC/Al kompozitlerinde tane takviyelerinin aşınma performansına etkileri, 11 th International Materials Symposium, 410-414 Denizli/Türkiye.
  • 22. Buytoz, S., (2006). Effects of FeCrC and FeSiCrC particles on wear behaviour of aluminum metal matrix composite, Materials Science and Technology, 22, 6, 679-686.
  • 23. Sahoo, K.L., Sivararnakrishnan, C.D., Chakrabarti, A.K. (2000) Mat. Sci. Technol. 16, p. 227.
  • 24. Howell, G.J., Ball, A. (1995). Dry sliding wear of particulate-reinforced aluminum alloys against automobile friction materials. Wear, 181-183, 379-390.
  • 25. Lim, S.C., Gupta, M., Ng, W.B. (1997). Friction and wear characteristics of Al-Cu/C composites synthesized using partial liquid phase casting process. Materials and Design, 18, 161-166.