Na0.67Mn0.5Fe0.5O2 Katot Malzemelerinin Üretimi, Yapısal ve Elektrokimyasal Özelliklerinin İncelenmesi

Sodyum tabakalı geçiş metalli piller, yüksek kapasiteleri ve düşük maliyetlerinden dolayı Li-iyon pillere alternatif olarak yakın gelecekte ümit vadetmektedirler. Bu çalışmada katı hal reaksiyon yöntemiyle Na0.67Mn0.5Fe0.5O2 katot malzemesi farklı sıcaklık ve sürelerde hazırlanmıştır. Hazırlanan bu malzemelerin yapısal özellikleri XRD, SEM ve FTIR analizleri ile yapılmıştır. Na0.67Mn0.5Fe0.5O2 katodunun elektrokimyasal özelliklerini ve pil performansını araştırmak için bu katotlar Cr2032 pil formunda kullanılarak CV, EIS ve döngü performansları incelenmiştir. Na0.67Mn0.5Fe0.5O2 katodu 1.5-4 V aralığında 100 döngülük kapasitesi ölçülmüş ve katodunun ilk deşarj kapasitesi 121 mAh/g iken 100. döngüden sonraki deşarj kapasitesi 72 mAh/g olarak gözlemlenmiştir.
Anahtar Kelimeler:

Na-iyon pil, Mn, Fe

___

  • [1] Kubota K, Komaba S. Review—Practical Issues and Future Perspective for Na-Ion Batteries, Journal of The Electrochemical Society, 162 (14) A2538-A2550 (2015)
  • [2] Su H, Jaffera S, Yu H. Transition metal oxides for sodium-ion batteries, Energy Storage Materials 5 (2016) 116–131
  • [3] Zhang R, Cui Y, Fan W, He G, Liu X. Ambient stable Na0.76Mn0.48Ti0.44O2 as anode for Na-ion battery, Electrochimica Acta 295 (2019) 181e186
  • [4] Nayak D, Sarkar T, Chaudhary NVP, Bharadwaj MD, Ghosh S, Adyam V, Electrochemical properties and first-principle analysis of Nax[MyMn1−y]O2 (M=Fe, Ni) cathode, J Solid State Electrochem December 2017
  • [5] Dose WM, Sharma N, Pramudita JC, Brand HEA, Gonzalo E. Teofilo Rojo, Structure−Electrochemical Evolution of a Mn-Rich P2-Na2/3Fe0.2Mn0.8O2 Na-Ion Battery Cathode, Chem. Mater. 2017, 29, 7416−7423
  • [6] Blesa MC, Moran E, Leon C, Santamaria J, Torner JD, Menende N. α-NaFeO: ionic conductivity and sodium extraction, Solid State Ionics 126 (1999) 81–87
  • [7] Ma X, Chen H, Ceder G. Electrochemical Properties of Monoclinic NaMnO2, J. Electrochem. Soc. 2011 158(12): A1307-A1312
  • [8] Duffort V, Talaie E, Black R, Nazar LF. Uptake of in Layered P2-Na0.67Mn0.5Fe0.5O2: Insertion of Carbonate Anions, Chem. Mater. 2015, 27, 2515-2524
  • [9] Nigam B, Mittal S, Prakash A, Satsangi S, Mahto PK, Swain BP. Synthesis and characterization of Fe3O4 nanoparticles for nanofluid applications-a review. Mater. Sci. Eng. 377, 012187 (2018)
  • [10] Le VT, Pham TM, Doan VD, Lebedeva OE, Nguyen HT. Removal of Pb(ii) ions from aqueous solution usinga novel composite adsorbent of Fe3o4/PVA/spentcoffee grounds, 019 Taylor & Francis Group, LLC 2019.1565770
  • [11] Ribeiro VGP, Barreto ACH, Denardin JC, Mele G, Carbone L, Mazzetto SE, Sousa EMB, Fechine PBA. Magnetic nanoparticles coated with anacardic acid derivedfrom cashew nut shell liquid, J Mater Sci (2013) 48:7875–7882
  • [12] Julien CM, Massot M, VIBRATIONAL SPECTROSCOPY OF ELECTRODE MATERIALS FOR RECHARGEABLE LITHIUM BATTERIES III. OXIDE FRAMEWORKS, Proceedings of the International Workshop "Advanced Techniques for Energy Sources Investigation and Testing" 4 – 9 Sept. 2004, Sofia, Bulgaria
  • [13] Liang J, Wei D, Cheng Q, Zhu Y, Li X, Fan L, Zhang J, Qian Y. Cycling of Fe2O3 Nanorice as an Anode throughElectrochemical Porousness and the Solid–ElectrolyteInterphase Thermolysis Approach, ChemPlusChem2014,79, 143 – 150143
  • [14] Ren L, Qiu H, Qin W, Zhang M, Li Y, Wei P. Inhibition mechanism of Ca2+, Mg2+ and Fe3+ in finecassiterite flotation usingoctanohydroxamic acid, R. Soc. open sci.5:180158
  • [15] Yuan A, Wang X, Wang Y, Hu J. Textural and capacitive characteristics of MnO2 nanocrystals derivedfrom a novel solid-reaction route, Electrochimica Acta 54 (2009) 1021–1026
  • [16] Ahangaran F, Hassanzadeh A, Nouri S. Surface modification of Fe3O4@SiO2microsphereby silane coupling agent, Ahangaranet al. International Nano Letters2013,3:23
  • [17] Wang H, Gao R, Li Z, Sun L, Hu Z, Liu X. Different Effects of Al Substitution for Mn or Fe on the Structure and Electrochemical Properties of Na0.67Mn0.5Fe0.5O2 as a Sodium Ion Battery Cathode Material, Inorg. Chem. 2018, 57, 5249−5257