Cu-23.10Al-2.50Be (%at.) Şekil Hafızalı Alaşımının Termodinamik ve Yapısal Parametreleri Üzerine Işınlama Süresinin Etkisi

Bu çalışmada Cu-23.10Al-2.50Be (% at.) şekil hafızalı alaşım (ŞHA) numuneleri farklı sürelerde Co-60 gama radyasyon kaynağı ile ışınlanmıştır. Gama radyasyon kaynağı ile ışınlanmış Cu-23.10Al-2.50Be şekil hafızalı alaşım numunelerinin ışınlama süresinin dönüşüm sıcaklıkları, termodinamik parametreler ve yapısal değişimler üzerindeki etkisi incelenmiştir. Işınlama süresine bağlı olarak, alaşım numunelerinin dönüşüm sıcaklıklarını ve termodinamik parametrelerini belirlemek için diferansiyel taramalı kalorimetrisi (DSC), yapısal değişimlerini belirlemek için, oda sıcaklığında X-ışını kırınım (XRD) ölçümleri ile incelenmiştir. Artan ışınlama süresi ile alaşım numunelerinin kristalit boyutunda meydana gelen değişimler belirlenmiştir

___

  • [1] V. Recarte, J.I. Pérez-Landazábal, P.P. Rodrı́guez, E.H. Bocanegra, M.L. Nó, , & J. San Juan, Thermodynamics of thermally induced martensitic transformations in Cu–Al–Ni shape memory alloys. Acta materialia, 52(13), (2004) 3941-3948. https://doi.org/10.1016/j.actamat.2004.05.009
  • [2] T.W. Duerig, K.N.Melton, & D.W.C.M. Stöckel, Engineering aspects of shape memory alloys. Butterworth-heinemann (2013).
  • [3] T.Y. Elrasasi, L. Daróczi, & D.L. Beke, Calculation of elastic energy contributions in single crystalline Cu-11.5 wt% Al-5.0 wt% Ni shape memory alloy. In Materials Science Forum (Vol. 729, pp. 37-42). Trans Tech Publications Ltd. doi:10.4028/www.scientific.net/MSF. (2013) 729.37
  • [4] K.K. Alaneme, J. U. Anaele, & E. A. Okotete, Martensite aging phenomena in Cu-based alloys: Effects on structural transformation, mechanical and shape memory properties: A critical review. Scientific African, 12, (2021) e00760. https://doi.org/10.1016/j.sciaf.2021.e00760
  • [5] K.K. Alaneme & E.A. Okotete, Reconciling viability and cost-effective shape memory alloy options–A review of copper and iron based shape memory metallic systems. Engineering Science and Technology, an International Journal, 19(3), (2016) 1582-1592. https://doi.org/10.1016/j.jestch.2016.05.010
  • [6] O. Shchyglo, U. Salman, & A. Finel, (2012). Martensitic phase transformations in Ni–Ti-based shape memory alloys: The Landau theory. Acta materialia, 60(19), 6784-6792. https://doi.org/10.1016/j.actamat.2012.08.056
  • [7] S. Miyazaki, & K. Otsuka, Development of shape memory alloys. Isij International, 29(5), (1989) 353-377.
  • [8] Y. Sutou, N. Koeda, T. Omori, R. Kainuma, & K. Ishida, Effects of ageing on bainitic and thermally induced martensitic transformations in ductile Cu–Al–Mn-based shape memory alloys. Acta Materialia, 57(19), (2009) 5748-5758. https://doi.org/10.1016/j.actamat.2009.08.003
  • [9] H. Warlimont, L. Delaey, Progr Mater Sci;18:1. 1974
  • [10] S.M. Chentouf, M. Bouabdallah, H. Cheniti, A. Eberhardt, E. Patoor & A. Sari, Ageing study of Cu–Al–Be hypoeutectoid shape memory alloy. Materials characterization, 61(11), (2010) 1187-1193. https://doi.org/10.1016/j.matchar.2010.07.009
  • [11] G.A. Lara-Rodriguez, G. Gonzalez, H. Flores-Zúñiga, , & J. Cortés-Pérez, The effect of rapid solidification and grain size on the transformation temperatures of Cu–Al–Be melt spun alloys. Materials Characterization, 57(3), (2006) 154-159. https://doi.org/10.1016/j.matchar.2005.12.017
  • [12] S. Montecinos, A. Cuniberti, M.L. Castro, , & R. Boeri, Phase transformations during continuous cooling of polycrystalline β-CuAlBe alloys. Journal of alloys and compounds, 467(1-2), (2009) 278-283. https://doi.org/10.1016/j.jallcom.2007.12.062
  • [13] S. Belkahla, , H.F. Zuñiga,., & G. Guenin, Elaboration and characterization of new low temperature shape memory CuAlBe alloys. Materials Science and Engineering: A, 169(1-2), (1993) 119-124. https://doi.org/10.1016/0921-5093(93)90606-F
  • [14] M.L. Castro, , & R. Romero, Isothermal decomposition of the Cu–22.72 Al–3.55 Be at.% alloy. Materials Science and Engineering: A, 287(1), (2000) 66-71. https://doi.org/10.1016/S0921-5093(00)00810-8
  • [15] V.H.C.de Albuquerque, T.A.D.A. Melo, R.M. Gomes, S.J.G.de Lima & J.M.R. Tavares, Grain size and temperature influence on the toughness of a CuAlBe shape memory alloy. Materials Science and Engineering: A, 528(1), (2010) 459-466. https://doi.org/10.1016/j.msea.2010.09.034
  • [16] D. Dunne, M. Morin, C. Gonzalez, & G. Guenin, The effect of quenching treatment on the reversible martensitic transformation in CuAlBe alloys. Materials Science and Engineering: A, 378(1-2), (2004) 257-262. https://doi.org/10.1016/j.msea.2003.11.079
  • [17] C.D. Medina, R.A Herrera, & J.F.Beltran, Improvement of superelasticity conditions in Cu-based shape memory alloys for seismic control applications. Engineering Structures, 274, (2023) 115151.
  • [18] L.K. Mansur & E.E Bloom Radiation Effects in Reactor Structural Alloys. Journal of Metals (1982) 23-31.
  • [19] Ş.N. Balo, A. Orhan, Co-60 ile Işınlanan Cu-Bazlı Şekil Hafızalı Alaşımların Termal Parametreleri ve Yapısal İncelemeleri, Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences International Indexed and Refereed ISSN 2667-6702, 8 (18) (2021) 151-164 www.euroasiajournal.org
  • [20] V. Giurgiutiu, A. Zagrai, The use of smart materials technologies in radiation environment and nuclear industry, SPIE's 7th International Symposium on Smart Structures and Materials and 5th International Symposium on Nondestructive Evaluation and Health Monitoring of Aging Infrastructure, 5-9 March 2000, Newport Beach, CA. 3985-103.
  • [21] C. Wayman, & H. Tong, On the equilibrium temperature in thermoelastic martensitic transformations, Scr. Metall., 11(5), (1977) 341–343. https://doi.org/10.1016/0036-9748(77)90263-0
  • [22] Ş.N. Balo , & M. Eskil, Thermodynamic and crystallographic properties of gamma radiated shape memory Cu-Al-Be alloy, Applied Physics A, 127(8), (2021) 1-10. https://doi.org/10.1007/s00339-021-04769-2
  • [23] R. Romero, J.L. Pelegrina, Change of entropy in the martensitic transformation and its dependence in Cu-based shape memory alloys, Materials Science and Engineering A, 354, (2003) 243-250. https://doi.org/10.1016/S0921-5093(03)00013-3
  • [24] Ş.N. Balo, F. Yakuphanoglu, The effects of Cr on isothermal oxidation behavior of Fe-30Mn-6Si alloy, Thermochimica Acta, 560 (2013) 43-46. https://doi.org/10.1016/j.tca.2013.03.005
  • [25] U.S. Mallik, V. Sampath, Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy, J Alloys Compd. 469 (2009) 156–163. https://doi.org/10.1016/j.jallcom.2008.01.128.
  • [26] S. Yang, F. Zhang, J. Wu, J. Zhang, C. Wang, X. Liu, Microstructure characterization, stress–strain behavior, superelasticity and shape memory effect of Cu–Al–Mn–Cr shape memory alloys, J Mater Sci. 52 (2017) 5917–5927. https://doi.org/10.1007/s10853-017-0827-x.
  • [27] S.N. Saud, E. Hamzah, T. Abubakar, H.R. Bakhsheshi-Rad, Thermal aging behavior in Cu-Al-Ni-xCo shape memory alloys, J Therm Anal Calorim. 119 (2015) 1273–1284. https://doi.org/10.1007/s10973-014-4265-6.
  • [28] O. Karaduman, İ. Özkul, C.A. Canbay, Shape memory effect characterization of a ternary CuAlNi high temperature SMA ribbons produced by melt spinning method, Advanced Engineering Science. 1 (2021) 26–33. http://publish.mersin.edu.tr/index.php/ades.
  • [29] C.A. Canbay, S. Gudeloglu, Z.K. Genc, Investigation of the Enthalpy/Entropy Variation and Structure of Cu–Al–Mn–Fe Shape Memory Alloys, Int J Thermophys. 36 (2015) 783–794. https://doi.org/10.1007/s10765-015-1842-2.
  • [30] B.D. Cullity, Elements of X-ray diffraction, Addison-Wesley Publishing Company, Massachussets, (1978).
  • [31] Ş.N. Balo, H.S.A Manguri, Observation of Physical Parameters in Cu-based SMA Aged Under Constant Pressure, Journal of Materials and Electronic Devices 3 (2021) 19-25.