ÜÇ BOYUTLU ELEKTROMAGNETİK DAĞILIM PROBLEMLERİN MOMENT METOD ÇÖZÜMLER İÇİN ETKİN DALGACIK DÖNÜŞÜM YAKLAŞIMI

Dalgacık Matris Transform(DMT) yöntemi 3 boyutlu saçıcılardaki elektromanyetik saçılım problemlerini incelemek için genişletilmiştir. Geleneksel DMT’de dalgacık tekniklerinin uygulanabilmesi için moment matrisinin kare olması ve boyutunun 2’nin tam katları olması gerekir. Ne varki 3D problemlerinde genellikle moment matrisinin boyutu 2m biçiminde değildir ve geleneksel DMT’nin doğrudan uygulanması çok çözü-nürlülük teknikleri açsından iyi sonuç vermeyebilir. Önerilen strateji ile DMT yönteminin etkili uygulanması için moment matrisin boyutunun ikinin tam katları olması gerekmez. Önerilen yaklaşımın geçerliliğini göstermek için matris seyrekliği ve bağıl hata cinsinden elde edilen sayısal sonuçlar yayına eklenmiştir.

AN EFFECTIVE WAVELET TRANSFORM APPROACH FOR THE MOMENT METHOD SOLUTIONS OF 3D ELECTROMAGNETIC SCATTERING PROBLEMS

The wavelet matrix transform(WMT) method has been extended to study the electromagnetic scattering problems from 3D scatterers. In conventional WMT, the moment matrix must be square, and size of it has to be an integer power of two for the wavelet techniques to be applicable. However, in 3D scattering problems, generally, the moment matrix is not of size 2m, and direct application of the conventional WMT to the moment matrix may not make sense in terms of multiresolution. With proposed strategy, size of the moment matrix need not to be an integer power of two for the efficient application of WMT method. Numerical results in terms of matrix sparsity and relative error in reconstructed current are provided to illustrate the validity of the  proposed approach.

___

  • 1. Goswami, J.C., Chan, A.K., and Chui, C.K., 1995. On Solving First-Kind Integral Equations Using Wavelets on a Bounded Interval. IEEE Trans. Antennas and Propagation, AP-43, 614-622
  • 2. Guan, N., Yashiro, K. and Ohkawa, S., 2000. On a Choice of Wavelet Bases in the Wavelet Trans-form Approach. IEEE Trans. Antennas and Pro-pagation, 48(8), 1186-1190
  • 3. Kim, H. and Ling, H., 1993. On the Application of Fast Wavelet Transform to the Integral Equation solution of Electromagnetic Scattering Problems. Micro.Opt.Tech.Lett., 6(3), 168-173
  • 4. Steinberg, B.Z and Leviatan, Y, 1993. On the Use of Wavelet Expansions in the Method of Mo-ments. IEEE Trans. Antennas and Propagation, AP-41, 610-619
  • 5. Sarkar, T.K., Su, C., and et al., 1998. A Tutorial on Wavelets from an Electrical Engineering Perspective, Part I: Discrete Wavelet Techniques. IEEE Trans.on Antennas and Propagation Mag., 40(5), 49-69
  • 6. Wagner, R.L.and Chew., W.C., 1995. A study of wavelets for the solution of electromagnetic integral equations. IEEE Trans. on Antennas and Propagation, 43(8), 802-810
  • 7. Wang., C.F., 1995. A hybrid wavelet expansion and boundary element analysis of electromagnetic scattering from conducting objects. IEEE Trans. on Antennas and Propagation, 43, 170-178
  • 8. Xia, M.Y., Chan, C.H., et al., 2001. Wavelet-based simulations of electromagnetic scattering from large-scale two-dimensional perfectly conducting random rough surfaces. IEEE Trans. on Geoscience and Remote Sensing, 39(4), 718-724
  • 9. Xiang, Z and Lu, Y, 1997. An Effective Wavelet Matrix Transform Approach for Efficient Solution of Electromagnetic Integral Equations. IEEE Trans. Antennas and Propagation, 45(8), 1205-1213