The In-Vitro Impact of Punica Granutum L. (Pomegranate) Juice on Colorectal Cancer Tumors with TP53 and KRAS Mutation

Objective: Colorectal cancer (CRC) is one of the most common human malignancies. A cure for CRC with TP53 and KRAS mutations remains elusive. Thus, the development of more efficient therapeutic approaches for the treatment of these patients is required. Induction of tumor cell death by certain phytochemicals derived from medicinal herbs has become a new frontier for cancer therapy research. Although the cancer suppressive effect of Punica granutum L (pomegranate) juice (PGJ) has been determined in CRC, the effect of PGJ depend on mutation status has not been investigated. Material and Method: The anti-proliferative activity of PGJ was tested in the SW480 cell line using the WST-1 assay. To determine the effect of PGJ on cell cycle and apoptosis progression in TP53 and KRAS mutated CRC, the expression levels of BIRC5, CCND1 and BCL2 were analyzed in SW480 cells using RT-qPCR. Results: According to the obtained data, PGJ contains 8,68 ± 0,168 mg/ml ellagic acid. 4% concentration of PGJ inhibited 50% of SW480 cell proliferation in 24h incubation and induced apoptosis though decreasing BCL2 mRNA expression level. Conclusion: The current study is the first to demonstrate the effect of PGJ on modulation of anti-apoptotic gene expression in a TP53 and KRAS mutated CRC cell line which implies the anti-tumor activity independent from p53 and K-Ras signaling pathways. Further studies and validations are required, we suggest that PGJ may be a strong candidate for studies of therapeutic cancer drugs for patients with TP53 and KRAS mutated CRC.

Punica Granutum L. (Nar) Suyunun TP53 ve KRAS Mutasyonu Taşıyan Kolorektal Kanser Tümörlerindeki İn-Vitro Etkisi

Amaç: Kolorektal kanser (KRK) insanlarda en yaygın görülen kanser türlerinden birisidir. TP53 ve KRAS mutasyonları taşıyan KRK hastalarının tedavisinde hala yeterince başarı sağlanamamıştır. Bu nedenle, bu hastaların tedavisi için daha etkin terapötik yaklaşımların geliştirilmesi gerekmektedir. Günümüzde gerçekleştirilmekte olan kanser tedavisi araştırmalarında şifalı bitkilerden elde edilen bazı fitokimyasalların kanser hücrelerinin ölümünü tetiklenme yeteneği üzerinde önemle durulmaktadır. Punica granutum L (nar) suyunun kanser baskılayıcı etkisi KRK'de belirlenmesine rağmen, nar suyunun mutasyon durumuna bağlı etkisi henüz araştırılmamıştır. Gereç ve Yöntem: WST-1 testi kullanılarak nar suyunun SW480 hücreleri üzerindeki anti-proliferatif etkisi belirlendi. Nar suyu muamelesi sonrası, RT-qPCR yöntemi ile BIRC5, CCND1 ve BCL2 genlerinin ekspresyon seviyeleri saptanarak TP53 ve KRAS mutasyonlu KRK tümörlerinde nar suyunun apoptoz üzerindeki etkisi değerlendirildi. Bulgular: İçeriğinde 8,68 ± 0,168 mg / mL ellagik asit içerdiği belirlediğimiz nar suyunun %4’lük konsantrasyonunun 24 saat inkübasyon süresinde SW480 hücre proliferasyonunu %50 oranında azalttığı ve BCL2 mRNA ekspresyon seviyesini düşürerek apoptozu tetiklediği saptandı. Sonuç: Mevcut çalışma, nar suyunun TP53 ve KRAS mutasyonlu KRK hücrelerinde anti-apoptotik genlerin ekspresyon seviyelerini değiştirerek TP53 ve KRAS sinyal yolaklarından bağımsız olarak anti-tümör etkisine yol açtığını gösteren ilk çalışmadır. İleri araştırmalara ve doğrulamaya gereksinim olmakla birlikte bulgularımız, nar suyunun TP53 ve KRAS mutasyonlu KRK hastaları için ilaç araştırmalarına güçlü bir aday olabileceğini göstermektedir.

___

1. Turkish Ministry of Health. 1999; http://www.saglik.gov.tr

2. Yan WF, Wu G, Sun PC, Qiu D. P53 mutations occur more commonly than KRAS mutations in colorectal adenoma. Int J Clin Exp Med 2015; 15: 1370-5.

3. Iacopetta B. TP53 mutation in colorectal cancer. Hum Mutat 2003; 21: 271-6.

4. Neumann J, Zeindl-Eberhart E, Kirchner T, Jung A. Frequency and type of KRAS mutations in routine diagnostic analysis of metastatic colorectal cancer. Pathol Res Pract 2009; 205: 858-62.

5. Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E, Lothe RA. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta 2015; 1855: 104-21.

6. Bos JL, Fearon ER, Hamilton SR, et al. Prevalence of ras gene mutations in human colorectal cancers. Nature 1987; 3: 293-7.

7. Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008; 23: 1757-65.

8. De Roock W, De Vriendt V, Normanno N, Ciardiello F, Tejpar S. KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol 2011; 12: 594-603.

9. Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003; 3: 768-80.

10. Shirode AB, Bharali DJ, Nallanthighal S, Coon JK, Mousa SA, Reliene R. Nanoencapsulation of pomegranate bioactive compounds for breast cancer chemoprevention. Int J Nanomedicine 2015; 10: 475-84.

11. Kalaycıoğlu Z, Erim FB. Total phenolic contents, antioxidant activities, and bioactive ingredients of juices from pomegranate cultivars worldwide. Food Chem 2017; 15: 496-507.

12. Lansky EP. Beware of pomegranates bearing 40% ellagic acid. J Med Food 2006; 9: 119-22.

13. Yousef AI, El-Masry OS, Abdel Mohsen MA. Impact of cellular genetic make-up on colorectal cancer cell lines response to ellagic acid: implications of small ınterfering RNA. Asian Pac J Cancer Prev 2016; 17: 743-8.

14. Tezcan G, Tunca B, Bekar A, et al. Olea europaea leaf extract improves the treatment response of GBM stem cells by modulating miRNA expression. Am J Cancer Res 2014; 6: 572-90.

15. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta DeltaC (T)) Method. Methods 2001; 25: 402-8.

16. Forouzanfar F, Afkhami Goli A, Asadpour E, Ghorbani A, Sadeghnia HR. Protective effect of Punica granatum L. against serum/glucose deprivation-induced PC12 cells injury. Evid Based Complement Alternat Med 2013; 2013: 716730. doi: 10.1155/2013/716730.

17. Middha SK, Usha T, Pande V. A review on antihyperglycemic and antihepatoprotective activity of ecofriendly Punica granatum peel waste. Evid Based Complement Alternat Med 2013; 2013: 656172. doi: 10.1155/2013/656172.

18. Raafat K, Samy W. Amelioration of diabetes and painful diabetic neuropathy by Punica granatum L. extract and its spray dried biopolymeric dispersions. Evid Based Complement Alternat Med 2014; 2014: 180495. doi: 10.1155/2014/180495.

19. Howell AB, Souza DHD. The pomegranate: effects on bacteria and viruses that influence human health. Evid Based Complement Alternat Med 2013; 2013: 606212. doi: 10.1155/2013/606212.

20. Colombo E, Sangiovanni E, DellAgli M. A review on the antiinflammatory activity of pomegranate in the gastrointestinal tract. Evid Based Complement Alternat Med 2013; 2013: 247145. doi: 10.1155/2013/247145.

21. Aviram M, Rosenblat M. Pomegranate protection against cardiovascular diseases. Evid Based Complement Alternat Med 2012; 2012: 382763. doi: 10.1155/2012/382763.

22. Bhatia D, Thoppil RJ, Mandal A, Samtani KA, Darvesh AS, Bishayee A. Pomegranate bioactive constituents suppress cell proliferation and induce apoptosis in an experimental model of hepatocellular carcinoma: role of Wnt/β-catenin signaling pathway. Evid Based Complement Alternat Med 2013; 2013: 371813. doi: 10.1155/2013/371813.

23. Vlachojannis C, Zimmermann BF, ChrubasikHausmann S. Efficacy and safety of pomegranate medicinal products for cancer. Evid Based Complement Alternat Med 2015; 2015: 258598. doi: 10.1155/2015/258598.

24. Panth N, Manandhar B, Paudel KR. Anticancer activity of punica granatum (Pomegranate): A review. Phytother Res 2017; 31: 568-78.

25. Lei F, Zhang XN, Wang W, et al. Evidence of anti-obesity effects of the pomegranate leaf extract in high-fat diet induced obese mice. Int J Obes 2007; 31: 1023-9.

26. Larrosa M, Tomás-Barberán FA, Espín JC. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using mitochondrial pathway. J Nutr Biochem 2006; 17: 611-25.

27. Reddy MK, Gupta SK, Jacob MR, Khan SI, Ferreira D. Antioxidant, antimalarial, and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids of Punica granatum L. Planta Med 2007; 73: 461-67.

28. Ahmed D, Eide PW, Eilertsen IA, et al. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2013; 16; 2:e71. doi: 10.1038/oncsis.2013.35.

29. Violette S, Poulain L, Dussaulx E, et al. Resistance of colon cancer cells to long-term 5-fluorouracil exposure is correlated to the relative level of Bcl-2 and Bcl-X(L) in addition to Bax and p53 status. Int J Cancer 2002; 98: 498-504.

30. Allegra CJ, Jessup JM, Somerfield MR, et al. American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol 2009; 27: 2091-6.

31. Therkildsen C, Bergmann TK, HenrichsenSchnack T, Ladelund S, Nilbert M. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: A systematic review and metaanalysis. Acta Oncol 2014; 53: 852-64.

32. Knickelbein K, Zhang L. Mutant KRAS as a critical determinant of the therapeutic response of colorectal cancer. Genes Dis 2015; 2: 4-12. 33. Symonds H, Krall L, Remington L, et al. p53- dependent apoptosis suppresses tumor growth and progression in vivo. Cell 1994; 26; 78: 703-11.

34. Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM, Lowe SW. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 2002; 1: 289-98.

35. Hardwick JM, Soane L. Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol 2013; 1: 5. Pii: a008722

36. Miyashita T, Harigai M, Hanada M, Reed JC. Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res 1994; 15: 3131-5.

37. Moll UM, Wolff S, Speidel D, Deppert W. Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 2005; 17: 631-6.

38. Erster S, Moll UM. Stress-induced p53 runs a transcription-independent death program. Biochem Biophys Res Commun 2005; 10: 843-50.

39. Talos F, Petrenko O, Mena P, Moll UM. Mitochondrially targeted p53 has tumor suppressor activities in vivo. Cancer Res 2005; 1: 9971-81.

40. Petros AM, Gunasekera A, Xu N, Olejniczak ET, Fesik SW. Defining the p53 DNA-binding domain/Bcl-x(L)-binding interface using NMR. FEBS Lett 2004; 13: 171-4.

41. Tomita Y, Marchenko N, Erster S, et al. WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. J Biol Chem 2006; 31: 8600- 6.

42. Hemann MT, Lowe SW. The p53-Bcl-2 connection. Cell Death Differ 2006; 13: 1256-9.

43. Bishayee A, Mandal A, Bhattacharyya P, Bhatia D. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis. Nutr Cancer 2016; 68: 120-30.

44. Banerjee N, Kim H, Talcott S, Mertens-Talcott S. Pomegranate polyphenolics suppressed azoxymethane-induced colorectal aberrant crypt foci and inflammation: possible role of miR-126/VCAM-1 and miR-126/PI3K/AKT/mTOR. Carcinogenesis 2013; 34: 2814-22.

45. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215-33.

46. Chen J, Xu X. Diet, epigenetic, and cancer prevention. Adv Genet 2010; 71: 237-55

47. Sah NK, Khan Z, Khan GJ, Bisen P S. Structural, functional and therapeutic biology of survivin. Cancer Lett 2006; 244: 164-71.

48. Altieri DC. Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 2003; 22: 8581-9.

49. Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 1993; 7: 812-21.

50. Rocha S, Martin AM, Meek DW, Perkins ND. p53 represses cyclin D1 transcription through down regulation of Bcl-3 and inducing increased association of the p52 NF-kappaB subunit with histone deacetylase 1. Mol Cell Biol 2003; 23: 4713-27.

51. Kasimsetty SG, Bialonska D, Reddy MK, Ma G, Khan SI, Ferreira D. Colon cancer chemopreventive activities of pomegranate ellagitannins and urolithins. J Agric Food Chem. 2010; 24: 2180-7.

52. Pek M, Yatim SMJM, Chen Y, et al. Oncogenic KRAS-associated gene signature defines cotargeting of CDK4/6 and MEK as a viable therapeutic strategy in colorectal cancer. Oncogene 2017; 31: 4975-86.
Fırat Tıp Dergisi-Cover
  • ISSN: 1300-9818
  • Başlangıç: 2015
  • Yayıncı: Fırat Üniversitesi Tıp Fakültesi