Öğrencilerin Mantıksal Düşünme Yeteneğinin Genetik Kavramlarını Anlama Düzeyine Etkisi

Öğrencilerin soyut ve varsayıma dayanan kavramları anlayabilmeleri yüksekdüzeyde mantıksal düşünme yeteneğine sahip olmaları ile mümkündür. Genetikkavramlar varsayıma dayanan imgesel kavramlar olduğundan, genetik problemlerinçözümü de yüksek düzeyde mantıksal düşünme yeteneği gerektirmektedir. Mantıksaldüşünme yeteneği ile genetik kavramları anlama arasındaki ilişkinin konu edildiği buçalışmada, öğrencilerin mantıksal düşünme yeteneğindeki farklılıkların, genetikkavramları anlama düzeylerine etkisinin araştırılması amaçlanmıştır. Tarama modelininizlendiği çalışmada, 586 öğrenciye Mantıksal Düşünme Yeteneği Testi ve İki AşamalıGenetik Kavram Testi uygulanmıştır. Araştırma problemlerine ilişkin çıkarımsalistatistikler için korelasyon analizi ve tek yönlü varyans analizi gerçekleştirilmiştir. Eldeedilen bulgular, mantıksal düşünme yeteneği düzeylerine göre öğrencilerin genetikkavramları anlamaları arasında anlamlı farklılıklar olduğunu göstermiştir. Bununlaberaber mantıksal düşünme yeteneği ile genetik kavramları anlama düzeyi arasındaanlamlı ve pozitif yönlü bir ilişki r=0,479, p

___

  • Baker, W. P. & Lawson, A. E. (2001). Complex instructional analogies and theoretical concept acquisition in college genetics. Science Education, 85, 665-683.
  • Banet, E. & Ayuso, E. (2000). Teaching genetics at secondary school: A strategy for teaching about the location of inheritance information. Science Education, 84, 313-351.
  • Bayram, H. & Comek, A. (2009). Examining the relations between science attitudes, logical thinking ability, information literacy and academic achievement through internet assisted chemistry education. Procedia-Social and Behavioral Sciences, 1 (1), 1526-1532.
  • Büyüköztürk, Ş. (2003). Sosyal Bilimler Için Veri Analizi El Kitabı, 3. Baskı, Ankara: Pegem A Yayıncılık.
  • Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö. E., Karadeniz, Ş. & Demirel, F. (2008). Bilisel Araştırma Yöntemleri, Ankara: Pegem Yayınevi.
  • Cavallo, A. M. L. (1996). Meaningful learning, reasoning ability, and students’ understanding and problem solving of topics in genetics. Journal of Research in Science Teaching, 33(6), 625-656.
  • Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2. Edition, New Jersey: Lawrence Erlbaum Publishers.
  • Duncan, R. G. & Reiser, B. J. (2007). Reasoning across ontologically distinct levels: Students’ understanding of molecular genetics. Journal of Research in Science Teaching, 44(7), 938-959.
  • Fraenkel, J. R. & Wallen, N. E. (2006). How to Design and Evaluate Research in Education, Sixth Edition, New York: McGraw-Hill.
  • Garnett, P. J. & Tobin, K. (1984) Reasoning patterns of preservice elementary and middle school science teachers. Science Education, 68(5), 621-631.
  • Geban, Ö., Aşkar, P. & Özkan, İ. (1992). Effects of computer simulated experiments and problem solving approaches on high school students. Journal of Educational Research, 86, 5-10.
  • Gipson, M. H., Abraham, M. R. & Renner, J. W. (1989). Relationships between formal-operational thought and conceptual difficulties in genetics problem-solving. Journal of Research in Science Teaching, 26(9), 811- 821.
  • Inhelder, B. & Piaget, J. (1958). The Growth of Logical Thinking from Childhood to Adolescence, Eighth Printing, USA: Basic Books Inc. Publishers.
  • Jones, G. M., Forrester, J. H., Gardner, G. E., Andre, T., & Taylor, A. R. (2012). Students’ accuracy of measurement estimation: context, units, and logical thinking. School Science and Mathematics, 112 (3), 171-178.
  • Kılıç, D. & Sağlam, N. (2009a). Development of a two-tier diagnostic test to determine students’ understanding of concepts in genetics. Eurasian Journal of Educational Research, 36, 227-244.
  • Kılıç, D. & Sağlam, N. (2009b). Öğrencilerin mantıksal düşünme yeteneklerinin bazı değişkenler açısından incelenmesi. Ege Eğitim Dergisi, 10(2), 23-38.
  • Kılıç, D. & Sağlam, N. (2014). Students’ understanding of genetics concepts: The effect of reasoning ability and learning approaches. Journal of Biological Education, 48 (2), 63-70, DOI:10.1080/00219266.2013.837402
  • Knippels, M. P. J., Waarlo, A. J. & Boersma, K. T. (2005). Design criteria for learning and teaching genetics. Journal of Biological Education, 39(3), 108-112.
  • Koray, Ö. & Köksal, M. S. (2009). The effect of creative and critical thinking based laboratory applications on creative and logical thinking abilities of prospective teachers. Asia-Pacific Forum on Science Learning and Teaching, 10 (1).
  • Lawson, A. E. (1982). Formal reasoning, achievement, and intelligence: An issue of importance. Science Education, 66(1), 77-83.
  • Lawson, A. E., Banks, D. L. & Logvin, M. (2006). Self-efficacy, reasoning ability, and achievement in college biology. Journal of Research in Science Teaching. DOI 10.1002/tea.20172.
  • Lawson, A. E., Clark, B., Cramer-Meldrum, E., Falconer, K. A., Sequist, J. M. & Kwon, Y. (2000). Development of scientific reasoning in college biology: Do two levels of general hypothesis-testing skills exist? Journal of Research in Science Teaching, 37(1), 81-101.
  • Lawson, A. E. & Renner, J. W. (1975). Relationships of science subject matter and developmental levels of learners. Journal of Research in Science Teaching, 12(4), 347-358.
  • Lawson, A. E. & Thompson, L. D. (1988). Formal reasoning ability and misconceptions concerning genetics and natural selection. Journal of Research in Science Teaching, 25(9), 733-746.
  • Linn, M. C., Pulos, S. & Gans, A. (1981). Correlates of formal reasoning: Content and problem effects. Journal of Research in Science Teaching, 18(5), 435-447.
  • Oliva, J. M. (2003). The structural coherence of students’ conceptions in mechanics and conceptual change. International Journal of Science Education, 25(5), 539-561.
  • Seymour, J. & Longden, B. (1991). Respiration – that’s breathing isn’t it? Journal of Biological Education, 25(3), 177-183.
  • Simpson, W. D. & Marek, E. A. (1988). Understandings and misconceptions of biology concepts held by students attending small high schools and students attending large high schools. Journal of Research in Science Teaching, 25(5), 361-374.
  • Tobin, K. G. & Capie, W. (1981). The development and validation of a group test of logical thinking. Educational and Psychological Measurement, 41, 413-423.
  • Tobin, K. G. & Capie, W. (1982). Relationships between formal reasoning ability, locus of control, academic engagement and integrated process skill achievement. Journal of Research in Science Teaching, 19(2), 113-1121.
  • Valanides, N. C. (1996). Formal reasoning and science teaching. School Science and Mathematics, 96(2), 99-111.
  • Valanides, N. C. (1997). Formal reasoning abilities and school achievement. Studies in Educational Evaluation, 23(2), 169-185.
  • Yenilmez, A., Sungur, S. & Tekkaya, C. (2005). Investigating students’ logical thinking abilities: The effects of gender and grade level. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 28, 219-225.